DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modelling oxygen self-diffusion in UO2 under pressure

Abstract

Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.

Authors:
 [1];  [2];  [3];  [3]
  1. Imperial College London, London (United Kingdom); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Imperial College London, London (United Kingdom)
  3. Coventry Univ., Coventry (United Kingdom)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1296666
Report Number(s):
LA-UR-15-26859
Journal ID: ISSN 0167-2738
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Solid State Ionics
Additional Journal Information:
Journal Volume: 282; Journal ID: ISSN 0167-2738
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; UO2; self-diffusion; pressure

Citation Formats

Cooper, Michael William D., Grimes, R. W., Fitzpatrick, M. E., and Chroneos, A. Modelling oxygen self-diffusion in UO2 under pressure. United States: N. p., 2015. Web. doi:10.1016/j.ssi.2015.09.006.
Cooper, Michael William D., Grimes, R. W., Fitzpatrick, M. E., & Chroneos, A. Modelling oxygen self-diffusion in UO2 under pressure. United States. https://doi.org/10.1016/j.ssi.2015.09.006
Cooper, Michael William D., Grimes, R. W., Fitzpatrick, M. E., and Chroneos, A. Thu . "Modelling oxygen self-diffusion in UO2 under pressure". United States. https://doi.org/10.1016/j.ssi.2015.09.006. https://www.osti.gov/servlets/purl/1296666.
@article{osti_1296666,
title = {Modelling oxygen self-diffusion in UO2 under pressure},
author = {Cooper, Michael William D. and Grimes, R. W. and Fitzpatrick, M. E. and Chroneos, A.},
abstractNote = {Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.},
doi = {10.1016/j.ssi.2015.09.006},
journal = {Solid State Ionics},
number = ,
volume = 282,
place = {United States},
year = {Thu Oct 22 00:00:00 EDT 2015},
month = {Thu Oct 22 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 43 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thorium Fuel for Nuclear Energy
journal, January 2003


Opportunities for Advanced Ceramics and Composites in the Nuclear Sector
journal, June 2013

  • Lee, William Edward; Gilbert, Matthew; Murphy, Samuel Thomas
  • Journal of the American Ceramic Society, Vol. 96, Issue 7
  • DOI: 10.1111/jace.12406

Comparison of interatomic potentials for UO2. Part I: Static calculations
journal, June 2007


Nuclear wasteform materials: Atomistic simulation case studies
journal, October 2013


Calculation of the formation entropy of vacancies due to anharmonic effects
journal, April 1977


Estimation of the migration enthalpy and entropy for cation vacancy motion in alkali halides with the NaCl-type structure
journal, February 1977


Comparison of models that interconnect point defect parameters in solids with bulk properties
journal, June 2007


Point defect parameters in β-PbF2 revisited
journal, May 2008


Calculation of oxygen self-diffusion coefficients in Mg2SiO4 polymorphs and MgSiO3 perovskite based on the compensation law
journal, March 2011


Application of the cBΩ model to the calculation of diffusion parameters of He in olivine
journal, November 2013


Modeling self-diffusion in UO2 and ThO2 by connecting point defect parameters with bulk properties
journal, June 2015


Atomic transport properties in UO2 and mixed oxides (U, Pu)O2
journal, January 1987

  • Matzke, Hansjoachim
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 83, Issue 7
  • DOI: 10.1039/f29878301121

DFT + U investigation of charged point defects and clusters in UO 2
journal, July 2014


A many-body potential approach to modelling the thermomechanical properties of actinide oxides
journal, February 2014


Thermophysical properties and oxygen transport in the (U ,Pu1−)O2 lattice
journal, June 2015


Thermophysical and anion diffusion properties of (U x ,Th 1− x )O 2
journal, November 2014

  • Cooper, Michael W. D.; Murphy, Samuel T.; Fossati, Paul C. M.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 470, Issue 2171
  • DOI: 10.1098/rspa.2014.0427

Impact of uniaxial strain and doping on oxygen diffusion in CeO2
journal, August 2014

  • Rushton, M. J. D.; Chroneos, A.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06068

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Effect of high pressure on the fluctuation conductivity and the charge transfer of YBa2Cu3O7−δ single crystals
journal, April 2008


Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria
journal, January 2013


Calculation of self-diffusion coefficients in diamond
journal, January 2012

  • Zhang, Baohua; Wu, Xiaoping
  • Applied Physics Letters, Vol. 100, Issue 5
  • DOI: 10.1063/1.3680600

Calculation of self-diffusion coefficients in iron
journal, January 2014


Works referencing / citing this record:

Computer modeling investigation of MgV 2 O 4 for Mg-ion batteries
journal, January 2020

  • Kuganathan, Navaratnarajah; Davazoglou, Konstantinos; Chroneos, Alexander
  • Journal of Applied Physics, Vol. 127, Issue 3
  • DOI: 10.1063/1.5139114

Diffusion and Dopant Activation in Germanium: Insights from Recent Experimental and Theoretical Results
journal, June 2019

  • Sgourou, E. N.; Panayiotatos, Y.; Vovk, R. V.
  • Applied Sciences, Vol. 9, Issue 12
  • DOI: 10.3390/app9122454

Atomistic Simulations of the Defect Chemistry and Self-Diffusion of Li-ion in LiAlO2
journal, July 2019

  • Kuganathan, N.; Dark, J.; Sgourou, E. N.
  • Energies, Vol. 12, Issue 15
  • DOI: 10.3390/en12152895

A Computational Study of Defects, Li-Ion Migration and Dopants in Li2ZnSiO4 Polymorphs
journal, October 2019

  • Perera, Dilki; Ganeshalingam, Sashikesh; Kuganathan, Navaratnarajah
  • Crystals, Vol. 9, Issue 11
  • DOI: 10.3390/cryst9110563

Defect Chemistry and Na-Ion Diffusion in Na3Fe2(PO4)3 Cathode Material
journal, April 2019

  • Kuganathan, Navaratnarajah; Chroneos, Alexander
  • Materials, Vol. 12, Issue 8
  • DOI: 10.3390/ma12081348

Defects, Diffusion, and Dopants in Li2Ti6O13: Atomistic Simulation Study
journal, September 2019

  • Kuganathan, Navaratnarajah; Ganeshalingam, Sashikesh; Chroneos, Alexander
  • Materials, Vol. 12, Issue 18
  • DOI: 10.3390/ma12182851

312 MAX Phases: Elastic Properties and Lithiation
journal, December 2019

  • Filippatos, P. P.; Hadi, M. A.; Christopoulos, S. -R. G.
  • Materials, Vol. 12, Issue 24
  • DOI: 10.3390/ma12244098

312 MAX Phases: Elastic Properties and Lithiation
journal, December 2019

  • Filippatos, P. P.; Hadi, M. A.; Christopoulos, S. -R. G.
  • Materials, Vol. 12, Issue 24
  • DOI: 10.3390/ma12244098