skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 8, 2017

Title: Waveform inversion of acoustic waves for explosion yield estimation

We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.
Authors:
 [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1289369
Report Number(s):
LLNL-JRNL--689057
Journal ID: ISSN 0094-8276
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 43; Journal Issue: 13; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Research Org:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 58 GEOSCIENCES