skip to main content

DOE PAGESDOE PAGES

Title: Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation,more » indicates the importance of very reactive (τOH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low-to-intermediate ages is due primarily to condensation of oxidized species, not heterogeneous oxidation. The OA decrease at high photochemical ages is dominated by heterogeneous oxidation followed by fragmentation/evaporation. A comparison of urban SOA formation in this study with a similar study of vehicle SOA in a tunnel suggests the importance of vehicle emissions for urban SOA. Pre-2007 SOA models underpredict SOA formation by an order of magnitude, while a more recent model performs better but overpredicts at higher ages. Furthermore, these results demonstrate the value of the reactor as a tool for in situ evaluation of the SOA formation potential and OA evolution from ambient air.« less
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [3] ;  [3] ;  [4] ;  [5] ;  [6] ;  [7] ;  [8] ;  [8] ;  [8] ;  [8] ;  [9] ;  [3]
  1. Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES) and Dept. of Atmospheric and Oceanic Sciences
  2. Univ. of Montreal, Montreal, QC (Canada). Dept. of Chemistry
  3. Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES) and Dept. of Chemistry and Biochemistry
  4. Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES) and Dept. of Atmospheric and Oceanic Sciences; NOAA Earth System Research Laboratory, Boulder, CO (United States). Chemical Sciences Division; Markes International Inc., Cincinnati, OH (United States)
  5. Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES) and Dept. of Chemistry and Biochemistry; Tofwerk AG, Thun (Switzerland)
  6. Pennsylvania State Univ., Univ. Park, PA (United States). Dept. of Meteorology
  7. Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES); NOAA Earth System Research Laboratory, Boulder, CO (United States). Chemical Sciences Division; Univ. of Innsbruck, Innsbruck (Austria). Institute of Meteorology and Geophysics
  8. Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES); NOAA Earth System Research Laboratory, Boulder, CO (United States). Chemical Sciences Division
  9. Univ. of Jaen, Jaen (Spain). Dept. of Mechanical and Mining Engineering
Publication Date:
OSTI Identifier:
1288357
Grant/Contract Number:
SC0006035; SC0011105; NA13OAR4310063
Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 16; Journal Issue: 11; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Research Org:
Univ. of Colorado, Boulder, CO (United States). Cooperative Institute for Research in the Environmental Sciences (CIRES)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES cloud condensation nuclei; biomass-burning smoke; volatility basis-set; gas-phase reactions; mexico-city; heterogeneous oxidation; mass-spectrometer; atmospheric chemistry; chemical-composition; radical chemistry