DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3–FeF3 Conversion Compounds by Direct Fluorination

Abstract

In this paper, we report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe2O3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe2O3-xF2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELS results showed porous interconnected nanodomains of FeF3 and Fe2O3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF3 + Fe2O3 composition, and correlate the results to their electrochemical performance. Finally and further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.

Authors:
 [1];  [1];  [2];  [1];  [3];  [4]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
  3. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Centre for Interdisciplinary Science and Graduate Education. Dept. of Chemical and Biomolecular Engineering
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1286723
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 9; Journal Issue: 3; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; conversion electrode; fluoride; fluorination; nano-Fe2O3

Citation Formats

Zhou, Hui, Ruther, Rose E., Adcock, Jamie, Zhou, Wu, Dai, Sheng, and Nanda, Jagjit. Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3–FeF3 Conversion Compounds by Direct Fluorination. United States: N. p., 2015. Web. doi:10.1021/acsnano.5b00191.
Zhou, Hui, Ruther, Rose E., Adcock, Jamie, Zhou, Wu, Dai, Sheng, & Nanda, Jagjit. Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3–FeF3 Conversion Compounds by Direct Fluorination. United States. https://doi.org/10.1021/acsnano.5b00191
Zhou, Hui, Ruther, Rose E., Adcock, Jamie, Zhou, Wu, Dai, Sheng, and Nanda, Jagjit. Sun . "Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3–FeF3 Conversion Compounds by Direct Fluorination". United States. https://doi.org/10.1021/acsnano.5b00191. https://www.osti.gov/servlets/purl/1286723.
@article{osti_1286723,
title = {Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe2O3–FeF3 Conversion Compounds by Direct Fluorination},
author = {Zhou, Hui and Ruther, Rose E. and Adcock, Jamie and Zhou, Wu and Dai, Sheng and Nanda, Jagjit},
abstractNote = {In this paper, we report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe2O3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe2O3-xF2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELS results showed porous interconnected nanodomains of FeF3 and Fe2O3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF3 + Fe2O3 composition, and correlate the results to their electrochemical performance. Finally and further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.},
doi = {10.1021/acsnano.5b00191},
journal = {ACS Nano},
number = 3,
volume = 9,
place = {United States},
year = {Sun Feb 22 00:00:00 EST 2015},
month = {Sun Feb 22 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 44 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Direct Observation of Inhomogeneous Solid Electrolyte Interphase on MnO Anode with Atomic Force Microscopy and Spectroscopy
journal, January 2012

  • Zhang, Jie; Wang, Rui; Yang, Xiaocheng
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl300570d

Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode
journal, May 2010

  • Ban, Chunmei; Wu, Zhuangchun; Gillaspie, Dane T.
  • Advanced Materials, Vol. 22, Issue 20, p. E145-E149
  • DOI: 10.1002/adma.200904285

A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells
journal, May 1981


Formation of Fe 2 O 3 Microboxes with Hierarchical Shell Structures from Metal–Organic Frameworks and Their Lithium Storage Properties
journal, October 2012

  • Zhang, Lei; Wu, Hao Bin; Madhavi, Srinivasan
  • Journal of the American Chemical Society, Vol. 134, Issue 42
  • DOI: 10.1021/ja307475c

?-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications
journal, March 2005


Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries
journal, April 2012

  • Koo, Bonil; Xiong, Hui; Slater, Michael D.
  • Nano Letters, Vol. 12, Issue 5, p. 2429-2435
  • DOI: 10.1021/nl3004286

Mesoporous Co 3 O 4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability
journal, January 2008

  • Li, Yanguang; Tan, Bing; Wu, Yiying
  • Nano Letters, Vol. 8, Issue 1
  • DOI: 10.1021/nl0725906

Interface electrochemistry in conversion materials for Li-ion batteries
journal, January 2011

  • Dalverny, A. -L.; Filhol, J. -S.; Doublet, M. -L.
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04202a

Conversion mechanism of nickel fluoride and NiO-doped nickel fluoride in Li ion batteries
journal, January 2012


Investigation of the Conversion Reaction Mechanisms for Binary Copper(II) Compounds by Solid-State NMR Spectroscopy and X-ray Diffraction
journal, July 2009

  • Yamakawa, Naoko; Jiang, Meng; Grey, Clare P.
  • Chemistry of Materials, Vol. 21, Issue 14
  • DOI: 10.1021/cm900581b

Metal hydrides for lithium-ion batteries
journal, October 2008

  • Oumellal, Y.; Rougier, A.; Nazri, G. A.
  • Nature Materials, Vol. 7, Issue 11, p. 916-921
  • DOI: 10.1038/nmat2288

High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism
journal, October 2012

  • Li, Linsen; Meng, Fei; Jin, Song
  • Nano Letters, Vol. 12, Issue 11, p. 6030-6037
  • DOI: 10.1021/nl303630p

Carbon Metal Fluoride Nanocomposites: High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries
journal, January 2003

  • Badway, F.; Cosandey, F.; Pereira, N.
  • Journal of The Electrochemical Society, Vol. 150, Issue 10, p. A1318-A1327
  • DOI: 10.1149/1.1602454

Transition-metal chlorides as conversion cathode materials for Li-ion batteries
journal, April 2012


Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
journal, January 2012

  • Wang, Zhiyu; Luan, Deyan; Madhavi, Srinivasan
  • Energy Environ. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C1EE02831F

α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries
journal, October 2007

  • Reddy, M. V.; Yu, T.; Sow, C. H.
  • Advanced Functional Materials, Vol. 17, Issue 15
  • DOI: 10.1002/adfm.200601186

Spindle-like Mesoporous α-Fe 2 O 3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries
journal, January 2012

  • Xu, Xiaodong; Cao, Ruiguo; Jeong, Sookyung
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302618s

Carbon-Metal Fluoride Nanocomposites: Structure and Electrochemistry of FeF3 : C
journal, January 2003

  • Badway, F.; Pereira, N.; Cosandey, F.
  • Journal of The Electrochemical Society, Vol. 150, Issue 9, p. A1209-A1218
  • DOI: 10.1149/1.1596162

Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides
journal, January 2004

  • Li, Hong; Balaya, Palani; Maier, Joachim
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1878-A1885
  • DOI: 10.1149/1.1801451

Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction
journal, January 2005

  • Plitz, I.; Badway, F.; Al-Sharab, J.
  • Journal of The Electrochemical Society, Vol. 152, Issue 2, p. A307-A315
  • DOI: 10.1149/1.1842035

Fluoride based electrode materials for advanced energy storage devices
journal, April 2007


Iron Oxyfluorides as High Capacity Cathode Materials for Lithium Batteries
journal, January 2009

  • Pereira, N.; Badway, F.; Wartelsky, M.
  • Journal of The Electrochemical Society, Vol. 156, Issue 6, p. A407-A416
  • DOI: 10.1149/1.3106132

First-principles study of iron oxyfluorides and lithiation of FeOF
journal, March 2013


An Electron Diffraction and Crystal Chemical Investigation of Oxygen/Fluorine Ordering in Rutile-Type Iron Oxyfluoride, FeOF
journal, December 2000

  • Brink, Frank J.; Withers, Ray L.; Thompson, John G.
  • Journal of Solid State Chemistry, Vol. 155, Issue 2
  • DOI: 10.1006/jssc.2000.8925

Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe 3 O 4 Conversion Compound for Electrochemical Energy Storage
journal, October 2013

  • Zhou, Hui; Nanda, Jagjit; Martha, Surendra K.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 21
  • DOI: 10.1021/jz402017h

X-ray photoelectron study of the valence state of iron in iron-containing single-crystal (BiFeO3, PbFe1/2Nb1/2O3), and ceramic (BaFe1/2Nb1/2O3) multiferroics
journal, February 2011

  • Kozakov, A. T.; Kochur, A. G.; Googlev, K. A.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 184, Issue 1-2
  • DOI: 10.1016/j.elspec.2010.10.004

Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials
journal, February 2008


The Dirac Vector Model in Complex Spectra
journal, March 1934


Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries
journal, January 2012

  • Zhang, Wei; Ma, Lin; Yue, Hongjun
  • Journal of Materials Chemistry, Vol. 22, Issue 47
  • DOI: 10.1039/c2jm34391f

Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Iron Oxide Nanosheets and Nanoparticles Synthesized by a Facile Single-Step Coprecipitation Method for Lithium-Ion Batteries
journal, January 2011

  • Wu, Mao-Sung; Ou, Yang-Hui; Lin, Ya-Ping
  • Journal of The Electrochemical Society, Vol. 158, Issue 3
  • DOI: 10.1149/1.3527982

Transport, Phase Reactions, and Hysteresis of Iron Fluoride and Oxyfluoride Conversion Electrode Materials for Lithium Batteries
journal, April 2014

  • Ko, Jonathan K.; Wiaderek, Kamila M.; Pereira, Nathalie
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14
  • DOI: 10.1021/am500538b

Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery
journal, October 2011

  • Fulvio, Pasquale F.; Brown, Suree S.; Adcock, Jamie
  • Chemistry of Materials, Vol. 23, Issue 20
  • DOI: 10.1021/cm2012395

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Dedicated STEM for 200 to 40 keV operation
journal, June 2011

  • Dellby, N.; Bacon, N. J.; Hrncirik, P.
  • The European Physical Journal Applied Physics, Vol. 54, Issue 3
  • DOI: 10.1051/epjap/2011100429

Works referencing / citing this record:

Fluorination of MXene by Elemental F 2 as Electrode Material for Lithium‐Ion Batteries
journal, March 2019

  • Thapaliya, Bishnu P.; Jafta, Charl J.; Lyu, Hailong
  • ChemSusChem, Vol. 12, Issue 7
  • DOI: 10.1002/cssc.201900003

In situ surface protection for enhancing stability and performance of conversion-type cathodes
journal, January 2017

  • Wu, Feixiang; Borodin, Oleg; Yushin, Gleb
  • MRS Energy & Sustainability, Vol. 4
  • DOI: 10.1557/mre.2017.11

Fluoride doped γ-Fe 2 O 3 nanoparticles with increased MRI relaxivity
journal, January 2018

  • Jones, N. E.; Burnett, C. A.; Salamon, S.
  • Journal of Materials Chemistry B, Vol. 6, Issue 22
  • DOI: 10.1039/c8tb00360b

Improved Performance in FeF 2 Conversion Cathodes through Use of a Conductive 3D Scaffold and Al 2 O 3 ALD Coating
journal, July 2017

  • Kim, Sanghyeon; Liu, Jinyun; Sun, Ke
  • Advanced Functional Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adfm.201702783

Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices
journal, April 2018


Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries
journal, June 2017


FeO x @carbon yolk/shell nanowires with tailored void spaces as stable and high-capacity anodes for lithium ion batteries
journal, January 2016

  • Li, Xueying; Ma, Yuanyuan; Cao, Guozhong
  • Journal of Materials Chemistry A, Vol. 4, Issue 32
  • DOI: 10.1039/c6ta04351h

3D Honeycomb Architecture Enables a High‐Rate and Long‐Life Iron (III) Fluoride–Lithium Battery
journal, September 2019

  • Wu, Feixiang; Srot, Vesna; Chen, Shuangqiang
  • Advanced Materials, Vol. 31, Issue 43
  • DOI: 10.1002/adma.201905146

Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting
journal, May 2018


Fluorination of MXene by Elemental F 2 as Electrode Material for Lithium‐Ion Batteries
journal, April 2019

  • Thapaliya, Bishnu P.; Jafta, Charl J.; Lyu, Hailong
  • ChemSusChem, Vol. 12, Issue 7
  • DOI: 10.1002/cssc.201900793

Fluorination of MXene by Elemental F 2 as Electrode Material for Lithium‐Ion Batteries
journal, March 2019