skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on July 21, 2017

Title: Al00.3Ga0.7N PN diode with breakdown voltage >1600 V

Demonstration of Al00.3Ga0.7N PN diodes grown with breakdown voltages in excess of 1600 V is reported. The total epilayer thickness is 9.1 μm and was grown by metal-organic vapour-phase epitaxy on 1.3-mm-thick sapphire in order to achieve crack-free structures. A junction termination edge structure was employed to control the lateral electric fields. A current density of 3.5 kA/cm2 was achieved under DC forward bias and a reverse leakage current <3 nA was measured for voltages <1200 V. The differential on-resistance of 16 mΩ cm2 is limited by the lateral conductivity of the n-type contact layer required by the front-surface contact geometry of the device. An effective critical electric field of 5.9 MV/cm was determined from the epilayer properties and the reverse current–voltage characteristics. To our knowledge, this is the first aluminium gallium nitride (AlGaN)-based PN diode exhibiting a breakdown voltage in excess of 1 kV. Finally, we note that a Baliga figure of merit (Vbr2/Rspec,on) of 150 MW/cm2 found is the highest reported for an AlGaN PN diode and illustrates the potential of larger-bandgap AlGaN alloys for high-voltage devices.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Lehigh Univ., Bethlehem, PA (United States)
Publication Date:
OSTI Identifier:
1285958
Report Number(s):
SAND2016--7284J
Journal ID: ISSN 0013-5194; 646208
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Electronics Letters
Additional Journal Information:
Journal Volume: 52; Journal Issue: 15; Journal ID: ISSN 0013-5194
Publisher:
Institution of Engineering and Technology (IET)
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS