skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on June 6, 2017

Title: Oil-Soluble Polymer Brush Grafted Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction

Developments of high performance lubricants are driven by increasingly growing industrial demands and environmental concerns. We demonstrate oil-soluble polymer brush-grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil-miscible poly(lauryl methacrylate) brush-grafted silica and titania NPs were synthesized by surface-initiated atom transfer radical polymerization. Moreover, these hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at -20, 22, and 100°C for ≥55 days. High-contact stress ball-on-flat reciprocating sliding tribological tests at 100°C showed that addition of 1 wt% of hairy NPs into PAO led to significant reductions in coefficient of friction (up to ≈40%) and wear volume (up to ≈90%). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.
Authors:
 [1] ;  [1] ;  [2] ;  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1279408
Grant/Contract Number:
AC05-00OR22725; EE0006925
Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 55; Journal Issue: 30; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE friction reduction; lubricant additives; nanoparticles; polymer brushes; polymerization