DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics

Abstract

Experiments, analytic modeling, and numerical simulations are presented here to characterize carbon plasmas produced by high-intensity (109-1013 W cm-2) lasers relevant to experimental laboratory astrophysics. In the large-scale limit, the results agree well with a self-similar isentropic, adiabatic fluid model. Laser-target simulations, however, show small-scale structure in the velocity distribution of different ion species, which is also seen in experiments. These distributions indicate that most of the plasma energy resides in moderate charge states (C+3–C+4), most of the mass resides in the lowest charge states, and the highest charge states move fastest.

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC); Defense Threat Reduction Agency (DTRA); National Science Foundation (NSF)
OSTI Identifier:
1467853
Alternate Identifier(s):
OSTI ID: 1268440
Grant/Contract Number:  
SC0006538; HDTRA1-12-1-0024; NA0001995; 1414591
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 120; Journal Issue: 4; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 79 ASTRONOMY AND ASTROPHYSICS; polymers; carbon; plasma expansion; plasma diagnostics; astrophysical plasmas; laser ablation; plasma temperature; computer modeling

Citation Formats

Schaeffer, D. B., Bondarenko, A. S., Everson, E. T., Clark, S. E., Constantin, C. G., and Niemann, C. Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics. United States: N. p., 2016. Web. doi:10.1063/1.4959148.
Schaeffer, D. B., Bondarenko, A. S., Everson, E. T., Clark, S. E., Constantin, C. G., & Niemann, C. Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics. United States. https://doi.org/10.1063/1.4959148
Schaeffer, D. B., Bondarenko, A. S., Everson, E. T., Clark, S. E., Constantin, C. G., and Niemann, C. Fri . "Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics". United States. https://doi.org/10.1063/1.4959148. https://www.osti.gov/servlets/purl/1467853.
@article{osti_1467853,
title = {Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics},
author = {Schaeffer, D. B. and Bondarenko, A. S. and Everson, E. T. and Clark, S. E. and Constantin, C. G. and Niemann, C.},
abstractNote = {Experiments, analytic modeling, and numerical simulations are presented here to characterize carbon plasmas produced by high-intensity (109-1013 W cm-2) lasers relevant to experimental laboratory astrophysics. In the large-scale limit, the results agree well with a self-similar isentropic, adiabatic fluid model. Laser-target simulations, however, show small-scale structure in the velocity distribution of different ion species, which is also seen in experiments. These distributions indicate that most of the plasma energy resides in moderate charge states (C+3–C+4), most of the mass resides in the lowest charge states, and the highest charge states move fastest.},
doi = {10.1063/1.4959148},
journal = {Journal of Applied Physics},
number = 4,
volume = 120,
place = {United States},
year = {Fri Jul 22 00:00:00 EDT 2016},
month = {Fri Jul 22 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Angular Distribution of Electron Temperature and Density in a Laser-Ablation Plume
journal, April 2000


A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm
journal, January 1983


Diffusive shock acceleration at laser-driven shocks: studying cosmic-ray accelerators in the laboratory
journal, January 2013


Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston
journal, November 2015

  • Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934983

Temperature and density of an expanding laser produced plasma
journal, March 1974


Observation of collisionless shocks in a large current-free laboratory plasma
journal, November 2014

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Geophysical Research Letters, Vol. 41, Issue 21
  • DOI: 10.1002/2014GL061820

Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma
journal, August 2013

  • Clark, S. E.; Winske, D.; Schaeffer, D. B.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4819251

Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model
journal, May 1990


Recombination processes during the expansion of a laser-produced plasma
journal, January 1971


Thomson Scattering from High- Z Laser-Produced Plasmas
journal, January 1999


Electron density and temperature measurements in a laser produced carbon plasma
journal, September 1997

  • Harilal, S. S.; Bindhu, C. V.; Issac, Riju C.
  • Journal of Applied Physics, Vol. 82, Issue 5
  • DOI: 10.1063/1.366276

Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma
journal, February 2012


High-energy Nd:glass laser facility for collisionless laboratory astrophysics
journal, March 2012


Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
journal, July 2012

  • Schaeffer, D. B.; Everson, E. T.; Winske, D.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736846

Temperature of a Laser‐Heated Carbon Plasma
journal, August 1969

  • David, C. D.; Weichel, H.
  • Journal of Applied Physics, Vol. 40, Issue 9
  • DOI: 10.1063/1.1658256

Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown
journal, January 2005

  • Nemes, László; Keszler, Anna M.; Hornkohl, James O.
  • Applied Optics, Vol. 44, Issue 18
  • DOI: 10.1364/AO.44.003661

Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves
journal, January 2012

  • Gregori, G.; Ravasio, A.; Murphy, C. D.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10747

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
journal, October 2014


Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field
journal, January 1999

  • Neogi, A.; Thareja, R. K.
  • Physics of Plasmas, Vol. 6, Issue 1
  • DOI: 10.1063/1.873290

A spectroscopic study of the plasma generated by a laser from polyethylene
journal, November 1968

  • Boland, B. C.; Irons, F. E.; McWhirter, R. W. P.
  • Journal of Physics B: Atomic and Molecular Physics, Vol. 1, Issue 6
  • DOI: 10.1088/0022-3700/1/6/324

Gas dynamics and film profiles in pulsed-laser deposition of materials
journal, October 1993


Characteristics of ablation plasma from planar, laser‐driven targets
journal, October 1981

  • Grun, J.; Decoste, R.; Ripin, B. H.
  • Applied Physics Letters, Vol. 39, Issue 7
  • DOI: 10.1063/1.92788

Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma
journal, March 2009

  • Constantin, C.; Gekelman, W.; Pribyl, P.
  • Astrophysics and Space Science, Vol. 322, Issue 1-4
  • DOI: 10.1007/s10509-009-0012-z

Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device
journal, May 2014

  • Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876608

Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes
journal, September 2014


Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma
book, January 2009


Works referencing / citing this record:

A platform for high-repetition-rate laser experiments on the Large Plasma Device
journal, January 2018

  • Schaeffer, D. B.; Hofer, L. R.; Knall, E. N.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.11

Collisionless momentum transfer in space and astrophysical explosions
journal, February 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4041

On the generation of magnetized collisionless shocks in the large plasma device
journal, April 2017

  • Schaeffer, D. B.; Winske, D.; Larson, D. J.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978882

Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma
journal, August 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4995480

Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
journal, March 2018

  • Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5017637

Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling
journal, April 2018

  • Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5029302

Laboratory Observations of Ultra-low-frequency Analog Waves Driven by the Right-hand Resonant Ion Beam Instability
journal, February 2020

  • Heuer, Peter V.; Weidl, Martin. S.; Dorst, Robert S.
  • The Astrophysical Journal, Vol. 891, Issue 1
  • DOI: 10.3847/2041-8213/ab75f4