skip to main content

DOE PAGESDOE PAGES

Title: Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

In the low energy structures of the (TiO2)n(H2O)m (n ≤ 4, m ≤ 2n) and (TiO2)8(H2O)m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO2 clusters. Dissociative adsorption is the dominant reaction for the first two H2O adsorption reactions for n = 1, 2, and 4, for the first three H2O adsorption reactions for n = 3, and for the first four H2O adsorption reactions for n = 8. As more H2O’s are added to the hydrated (TiO2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO2 clusters: a Lewis acid–base Ti–O(H2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED,more » for the general reaction 2(-TiOH) → -TiOTi– + H2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH)4 to form the monocyclic ring cluster (TiO3H2)n + nH2O. ED is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO2)n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption were assigned.« less
Authors:
 [1] ;  [2] ;  [3]
  1. Univ. of Alabama, Tuscaloosa, AL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Univ. of Alabama, Tuscaloosa, AL (United States)
Publication Date:
OSTI Identifier:
1265877
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 119; Journal Issue: 46; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS