skip to main content

DOE PAGESDOE PAGES

Title: Microstructure design for fast oxygen conduction

Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations are other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.
Authors:
 [1] ;  [2]
  1. Univ. of Wyoming, Laramie, WY (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1265831
Grant/Contract Number:
AC05-00OR22725; AC02-05CH11231
Type:
Accepted Manuscript
Journal Name:
Journal of Materials Research
Additional Journal Information:
Journal Volume: 31; Journal Issue: 01; Journal ID: ISSN 0884-2914
Publisher:
Materials Research Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Oxygen conductivity; Diffusion; Microstructure