skip to main content


This content will become publicly available on July 8, 2017

Title: Design and expected performance of a fast neutron attenuation probe for light element density measurements

In this paper, we present the design and expected performance of a proof-of-concept 32 channel material identification system. Our system is based on the energy-dependent attenuation of fast neutrons for four elements: hydrogen, carbon, nitrogen and oxygen. We describe a new approach to obtaining a broad range of neutron energies to probe a sample, as well as our technique for reconstructing the molar densities within a sample. The system's performance as a function of time-of-flight energy resolution is explored using a Geant4-based Monte Carlo. Our results indicate that, with the expected detector response of our system, we will be able to determine the molar density of all four elements to within a 20–30% accuracy in a two hour scan time. In many cases this error is systematically low, thus the ratio between elements is more accurate. This degree of accuracy is enough to distinguish, for example, a sample of water from a sample of pure hydrogen peroxide: the ratio of oxygen to hydrogen is reconstructed to within 8±0.5% of the true value. Lastly, with future algorithm development that accounts for backgrounds caused by scattering within the sample itself, the accuracy of molar densities, not ratios, may improve to the 5–10%more » level for a two hour scan time.« less
 [1] ;  [1]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0168-9002; PII: S0168900216307185
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 833; Journal ID: ISSN 0168-9002
Research Org:
Sandia National Laboratories (SNL-CA), Livermore, CA (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Neutron time-of-flight; Material identification; Explosives detection