skip to main content

DOE PAGESDOE PAGES

Title: Longitudinal hydrodynamics from event-by-event Landau initial conditions

Here we investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of θ (20%-30%) expected at freeze-out for most scenarios. Moreover, the deviation from boost invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost invariance holds at midrapidity is inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard.
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [5]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. Frankfurt Inst. for Advanced Studies (FIAS), Frankfurt (Germany)
  3. Univ. of Campinas, Sao Paulo (Brazil)
  4. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1261410
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Physical Review. C, Nuclear Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 2; Journal ID: ISSN 0556-2813
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS