skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on April 15, 2017

Title: Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M2) (1.87 x 10-2 mS/cm-1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while in situ NR suggests the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [4] ;  [4] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Missouri Univ. of Science and Technology, Rolla, MO (United States)
  4. Univ. of Missouri, Columbia, MO (United States)
Publication Date:
OSTI Identifier:
1261360
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 18; Journal Issue: 20; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY