skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on February 28, 2017

Title: Orbital selective directional conductor in the two-orbital Hubbard model

Recently, we employed a developed many-body technique that allows for the incorporation of thermal effects, the rich phase diagram of a two-dimensional two-orbital (degenerate dxz and dyz) Hubbard model is presented varying temperature and the repulsion U. The main result is the finding at intermediate U of an antiferromagnetic orbital selective state where an effective dimensional reduction renders one direction insulating and the other metallic. Possible realizations of this state are discussed. Additionally, we also study nematicity above the N eel temperature. After a careful finite-size scaling analysis, the nematicity temperature window appears to survive in the bulk limit, although it is very narrow.
Authors:
 [1] ;  [2] ;  [3] ;  [3]
  1. Univ. of Tennessee, Knoxville, TN (United States); National Inst. of Science Education and Research, Jatni (India)
  2. Univ. of Tennessee, Knoxville, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1261329
Grant/Contract Number:
AC05-00OR22725; DMR-1404375
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 8; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY