skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on May 16, 2017

Title: First-principles study of atomic and electronic structures of 60° perfect and 30°/90° partial glide dislocations in CdTe

The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character, as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly inmore » terms of charge trapping and recombination.« less
Authors:
 [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1259771
Report Number(s):
LLNL-JRNL--677727
Journal ID: ISSN 2469-9950; PRBMDO
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 17; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY