skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on May 3, 2017

Title: Surface characterization of carbon fiber polymer composites and aluminum alloys after laser interference structuring

Here, the increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) and aluminum alloys as lightweight materials in the automotive and aerospace industries demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using an Nd:YAG laser in a two-beam interference setup, enabling the (a) structuring of the AL 5182 surface, (b) removal of the resin layer on top of carbon fibers, and (c) structuring of the carbon fibers. CFPC specimens of T700S carbon fiber, Prepreg - T83 epoxy, 5 ply thick, 0/90o plaques were used. The effect of laser fluence, scanning speed, and number of shots-per-spot was investigated on the removal rate of the resin without an excessive damage of the fibers. Optical micrographs, 3D imaging, and scanning electron microscope (SEM) imaging were used to study the effect of the laser processing on surface morphology.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
OSTI Identifier:
1259420
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Journal of The Minerals, Metals & Materials Society
Additional Journal Information:
Journal Volume: 68; Journal Issue: 7; Journal ID: ISSN 1047-4838
Publisher:
Springer
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Fossil Energy (FE)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE