skip to main content

DOE PAGESDOE PAGES

Title: Dynamic phases, pinning, and pattern formation for driven dislocation assemblies

We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation and dynamics in these systems.
Authors:
 [1] ;  [2] ;  [2] ;  [2]
  1. Missouri Univ. of Science and Technology, Rolla, MO (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
Publication Date:
OSTI Identifier:
1259291
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE condensed-matter physics; phase transitions and critical phenomena