DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy

Abstract

A major goal of cancer nanotherapy is to use nanoparticles as carriers for targeted delivery of anti-tumour agents. The drug–carrier association after intravenous administration is essential for efficient drug delivery to the tumour. However, a large number of currently available nanocarriers are self-assembled nanoparticles whose drug-loading stability is critically affected by the in vivo environment. Here we used in vivo FRET imaging to systematically investigate how drug–carrier compatibility affects drug release in a tumour mouse model. We found the drug’s hydrophobicity and miscibility with the nanoparticles are two independent key parameters that determine its accumulation in the tumour. Next, we applied these findings to improve chemotherapeutic delivery by augmenting the parent drug’s compatibility; as a result, we achieved better antitumour efficacy. Lastly, our results help elucidate nanomedicines’ in vivo fate and provide guidelines for efficient drug delivery.

Authors:
 [1];  [2];  [3];  [4];  [1];  [1];  [5];  [3];  [3];  [6];  [1];  [1];  [5]
  1. Icahn School of Medicine at Mount Sinai, New York, NY (United States)
  2. IcaIcahn School of Medicine at Mount Sinai, New York, NY (United States)
  3. The Norwegian Univ. of Science and Technology, Trondheim, (Norway)
  4. Weill Cornell Medical College of Cornell Univ., New York, NY (United States); IBM Thomas J. Watson Research Center, Yorktown Heights, NY (United States)
  5. Icahn School of Medicine at Mount Sinai, New York, NY (United States); Academic Medical Center, Amsterdam (The Netherlands)
  6. Weill Cornell Medical College of Cornell Univ., New York, NY (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); UT-Battelle LLC/ORNL, Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1258344
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Zhao, Yiming, Fay, Francois, Hak, Sjoerd, Manuel Perez-Aguilar, Jose, Sanchez-Gaytan, Brenda L., Goode, Brandon, Duivenvoorden, Raphael, de Lange Davies, Catharina, Bjorkoy, Astrid, Weinstein, Harel, Fayad, Zahi A., Perez-Medina, Carlos, and Mulder, Willem J. M. Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. United States: N. p., 2016. Web. doi:10.1038/ncomms11221.
Zhao, Yiming, Fay, Francois, Hak, Sjoerd, Manuel Perez-Aguilar, Jose, Sanchez-Gaytan, Brenda L., Goode, Brandon, Duivenvoorden, Raphael, de Lange Davies, Catharina, Bjorkoy, Astrid, Weinstein, Harel, Fayad, Zahi A., Perez-Medina, Carlos, & Mulder, Willem J. M. Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. United States. https://doi.org/10.1038/ncomms11221
Zhao, Yiming, Fay, Francois, Hak, Sjoerd, Manuel Perez-Aguilar, Jose, Sanchez-Gaytan, Brenda L., Goode, Brandon, Duivenvoorden, Raphael, de Lange Davies, Catharina, Bjorkoy, Astrid, Weinstein, Harel, Fayad, Zahi A., Perez-Medina, Carlos, and Mulder, Willem J. M. Wed . "Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy". United States. https://doi.org/10.1038/ncomms11221. https://www.osti.gov/servlets/purl/1258344.
@article{osti_1258344,
title = {Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy},
author = {Zhao, Yiming and Fay, Francois and Hak, Sjoerd and Manuel Perez-Aguilar, Jose and Sanchez-Gaytan, Brenda L. and Goode, Brandon and Duivenvoorden, Raphael and de Lange Davies, Catharina and Bjorkoy, Astrid and Weinstein, Harel and Fayad, Zahi A. and Perez-Medina, Carlos and Mulder, Willem J. M.},
abstractNote = {A major goal of cancer nanotherapy is to use nanoparticles as carriers for targeted delivery of anti-tumour agents. The drug–carrier association after intravenous administration is essential for efficient drug delivery to the tumour. However, a large number of currently available nanocarriers are self-assembled nanoparticles whose drug-loading stability is critically affected by the in vivo environment. Here we used in vivo FRET imaging to systematically investigate how drug–carrier compatibility affects drug release in a tumour mouse model. We found the drug’s hydrophobicity and miscibility with the nanoparticles are two independent key parameters that determine its accumulation in the tumour. Next, we applied these findings to improve chemotherapeutic delivery by augmenting the parent drug’s compatibility; as a result, we achieved better antitumour efficacy. Lastly, our results help elucidate nanomedicines’ in vivo fate and provide guidelines for efficient drug delivery.},
doi = {10.1038/ncomms11221},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {Wed Apr 13 00:00:00 EDT 2016},
month = {Wed Apr 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 126 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanotechnology Applications in Cancer
journal, August 2007


Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection
journal, November 2009

  • Andrew MacKay, J.; Chen, Mingnan; McDaniel, Jonathan R.
  • Nature Materials, Vol. 8, Issue 12
  • DOI: 10.1038/nmat2569

Understanding biophysicochemical interactions at the nano–bio interface
journal, June 2009

  • Nel, Andre E.; Mädler, Lutz; Velegol, Darrell
  • Nature Materials, Vol. 8, Issue 7
  • DOI: 10.1038/nmat2442

Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice
journal, October 2013

  • Zhao, Yiming; van Rooy, Inge; Hak, Sjoerd
  • ACS Nano, Vol. 7, Issue 11
  • DOI: 10.1021/nn404782p

Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size
journal, October 2011


Copolymer Micelles and Nanospheres with Different In Vitro Stability Demonstrate Similar Paclitaxel Pharmacokinetics
journal, January 2012

  • Letchford, Kevin; Burt, Helen M.
  • Molecular Pharmaceutics, Vol. 9, Issue 2
  • DOI: 10.1021/mp2002939

Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles
journal, February 2015


Principles of nanoparticle design for overcoming biological barriers to drug delivery
journal, September 2015

  • Blanco, Elvin; Shen, Haifa; Ferrari, Mauro
  • Nature Biotechnology, Vol. 33, Issue 9
  • DOI: 10.1038/nbt.3330

Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking
journal, July 2012

  • Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.
  • Langmuir, Vol. 28, Issue 34
  • DOI: 10.1021/la3017134

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugs
book, January 2013

  • Ahmed, Naveed; Mora-Huertas, C. E.; Jaafar-Maalej, Chiraz
  • Drug Delivery Strategies for Poorly Water‐Soluble Drugs
  • DOI: 10.1002/9781118444726.ch5

Nanoparticle therapeutics: an emerging treatment modality for cancer
journal, September 2008

  • Davis, Mark E.; Chen, Zhuo; Shin, Dong M.
  • Nature Reviews Drug Discovery, Vol. 7, Issue 9
  • DOI: 10.1038/nrd2614

Can drug molecules diffuse into the core of micelles?
journal, January 2012

  • Guo, Xin Dong; Qian, Yu; Zhang, Can Yang
  • Soft Matter, Vol. 8, Issue 39
  • DOI: 10.1039/c2sm26200b

Self-Assembled Delivery Vehicles for Poorly Water-Soluble Drugs: Basic Theoretical Considerations and Modeling Concepts
book, January 2013


Preclinical Development and Clinical Translation of a PSMA-Targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile
journal, April 2012


Bmi-1 induces radioresistance in MCF-7 mammary carcinoma cells
journal, December 2011


Constant pressure molecular dynamics simulation: The Langevin piston method
journal, September 1995

  • Feller, Scott E.; Zhang, Yuhong; Pastor, Richard W.
  • The Journal of Chemical Physics, Vol. 103, Issue 11
  • DOI: 10.1063/1.470648

Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)‐block‐polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations
journal, March 2008

  • Letchford, Kevin; Liggins, Richard; Burt, Helen
  • Journal of Pharmaceutical Sciences, Vol. 97, Issue 3
  • DOI: 10.1002/jps.21037

Nanonization strategies for poorly water-soluble drugs
journal, April 2011

  • Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang
  • Drug Discovery Today, Vol. 16, Issue 7-8, p. 354-360
  • DOI: 10.1016/j.drudis.2010.02.009

A holistic approach to targeting disease with polymeric nanoparticles
journal, January 2015

  • Cheng, Christopher J.; Tietjen, Gregory T.; Saucier-Sawyer, Jennifer K.
  • Nature Reviews Drug Discovery, Vol. 14, Issue 4
  • DOI: 10.1038/nrd4503

Spatiotemporal controlled delivery of nanoparticles to injured vasculature
journal, January 2010

  • Chan, J. M.; Zhang, L.; Tong, R.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 5
  • DOI: 10.1073/pnas.0914585107

Treating metastatic cancer with nanotechnology
journal, December 2011

  • Schroeder, Avi; Heller, Daniel A.; Winslow, Monte M.
  • Nature Reviews Cancer, Vol. 12, Issue 1
  • DOI: 10.1038/nrc3180

Quantum Dot and Cy5.5 Labeled Nanoparticles to Investigate Lipoprotein Biointeractions via Förster Resonance Energy Transfer
journal, December 2010

  • Skajaa, Torjus; Zhao, Yiming; van den Heuvel, Dave J.
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl1037903

Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction
journal, December 2009


HPMA copolymers with pH-controlled release of doxorubicin
journal, February 2003


In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration
journal, March 2007

  • Liu, Jubo; Zeng, Faquan; Allen, Christine
  • European Journal of Pharmaceutics and Biopharmaceutics, Vol. 65, Issue 3
  • DOI: 10.1016/j.ejpb.2006.11.010

Probing Hydrophobic Interactions Using Trajectories of Amphiphilic Molecules at a Hydrophobic/Water Interface
journal, April 2009

  • Honciuc, Andrei; Schwartz, Daniel K.
  • Journal of the American Chemical Society, Vol. 131, Issue 16
  • DOI: 10.1021/ja900607g

Targeted polymeric therapeutic nanoparticles: design, development and clinical translation
journal, January 2012

  • Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.
  • Chemical Society Reviews, Vol. 41, Issue 7
  • DOI: 10.1039/c2cs15344k

Partial solubility parameters of poly(d,l-lactide-co-glycolide)
journal, November 2004


Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery
journal, October 2014

  • Torchilin, Vladimir P.
  • Nature Reviews Drug Discovery, Vol. 13, Issue 11
  • DOI: 10.1038/nrd4333

Probing Lipid Coating Dynamics of Quantum Dot Core Micelles via Förster Resonance Energy Transfer
journal, December 2013


Doxil® — The first FDA-approved nano-drug: Lessons learned
journal, June 2012


Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine
journal, January 2004

  • Liu, Jubo; Xiao, Yuehua; Allen, Christine
  • Journal of Pharmaceutical Sciences, Vol. 93, Issue 1
  • DOI: 10.1002/jps.10533

Nanoparticulate Assemblies of Amphiphiles and Diagnostically Active Materials for Multimodality Imaging
journal, July 2009

  • Mulder, Willem J. M.; Strijkers, Gustav J.; van Tilborg, Geralda A. F.
  • Accounts of Chemical Research, Vol. 42, Issue 7
  • DOI: 10.1021/ar800223c

Paclitaxel-Initiated, Controlled Polymerization of Lactide for the Formulation of Polymeric Nanoparticulate Delivery Vehicles
journal, June 2008

  • Tong, Rong; Cheng, Jianjun
  • Angewandte Chemie International Edition, Vol. 47, Issue 26
  • DOI: 10.1002/anie.200800491

A drug-specific nanocarrier design for efficient anticancer therapy
journal, July 2015

  • Shi, Changying; Guo, Dandan; Xiao, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8449

The Rule of Five Revisited:  Applying Log D in Place of Log P in Drug-Likeness Filters
journal, August 2007

  • Bhal, Sanjivanjit K.; Kassam, Karim; Peirson, Ian G.
  • Molecular Pharmaceutics, Vol. 4, Issue 4
  • DOI: 10.1021/mp0700209

Steered molecular dynamics and mechanical functions of proteins
journal, April 2001


Solubilization of ?guest? molecules into polymeric aggregates
journal, January 2001


Polymeric nanomedicines based on poly(lactide) and poly(lactide-co-glycolide)
journal, December 2012

  • Tong, Rong; Gabrielson, Nathan P.; Fan, Timothy M.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 6
  • DOI: 10.1016/j.cossms.2013.01.001

Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality
journal, August 2003

  • Park, Sanghyun; Khalili-Araghi, Fatemeh; Tajkhorshid, Emad
  • The Journal of Chemical Physics, Vol. 119, Issue 6
  • DOI: 10.1063/1.1590311

Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging
journal, September 2007

  • Bartlett, D. W.; Su, H.; Hildebrandt, I. J.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 39
  • DOI: 10.1073/pnas.0707461104

Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer
journal, May 2011

  • Gianella, Anita; Jarzyna, Peter A.; Mani, Venkatesh
  • ACS Nano, Vol. 5, Issue 6
  • DOI: 10.1021/nn103336a

Fast lipoprotein chromatography: new method of analysis for plasma lipoproteins
journal, November 1993


Scalable molecular dynamics with NAMD
journal, January 2005

  • Phillips, James C.; Braun, Rosemary; Wang, Wei
  • Journal of Computational Chemistry, Vol. 26, Issue 16, p. 1781-1802
  • DOI: 10.1002/jcc.20289

CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
journal, January 2009

  • Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.21367

Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine
journal, January 2004

  • Liu, Jubo; Xiao, Yuehua; Allen, Christine
  • Journal of Pharmaceutical Sciences, Vol. 93, Issue 1
  • DOI: 10.1002/jps.10533

Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)‐block‐polycaprolactone diblock copolymer micelles: Theoretical and experimental data and correlations
journal, March 2008

  • Letchford, Kevin; Liggins, Richard; Burt, Helen
  • Journal of Pharmaceutical Sciences, Vol. 97, Issue 3
  • DOI: 10.1002/jps.21037

Probing Lipid Coating Dynamics of Quantum Dot Core Micelles via Förster Resonance Energy Transfer
journal, December 2013


Polymeric nanomedicines based on poly(lactide) and poly(lactide-co-glycolide)
journal, December 2012

  • Tong, Rong; Gabrielson, Nathan P.; Fan, Timothy M.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 6
  • DOI: 10.1016/j.cossms.2013.01.001

Nanonization strategies for poorly water-soluble drugs
journal, April 2011

  • Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang
  • Drug Discovery Today, Vol. 16, Issue 7-8, p. 354-360
  • DOI: 10.1016/j.drudis.2010.02.009

In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration
journal, March 2007

  • Liu, Jubo; Zeng, Faquan; Allen, Christine
  • European Journal of Pharmaceutics and Biopharmaceutics, Vol. 65, Issue 3
  • DOI: 10.1016/j.ejpb.2006.11.010

Partial solubility parameters of poly(d,l-lactide-co-glycolide)
journal, November 2004


Doxil® — The first FDA-approved nano-drug: Lessons learned
journal, June 2012


Interaction of drugs with bovine and human serum albumin
journal, September 2002


Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages
journal, July 2002


Nanoparticulate Assemblies of Amphiphiles and Diagnostically Active Materials for Multimodality Imaging
journal, July 2009

  • Mulder, Willem J. M.; Strijkers, Gustav J.; van Tilborg, Geralda A. F.
  • Accounts of Chemical Research, Vol. 42, Issue 7
  • DOI: 10.1021/ar800223c

Identifying Mechanisms of Interfacial Dynamics Using Single-Molecule Tracking
journal, July 2012

  • Kastantin, Mark; Walder, Robert; Schwartz, Daniel K.
  • Langmuir, Vol. 28, Issue 34
  • DOI: 10.1021/la3017134

The Rule of Five Revisited:  Applying Log D in Place of Log P in Drug-Likeness Filters
journal, August 2007

  • Bhal, Sanjivanjit K.; Kassam, Karim; Peirson, Ian G.
  • Molecular Pharmaceutics, Vol. 4, Issue 4
  • DOI: 10.1021/mp0700209

Copolymer Micelles and Nanospheres with Different In Vitro Stability Demonstrate Similar Paclitaxel Pharmacokinetics
journal, January 2012

  • Letchford, Kevin; Burt, Helen M.
  • Molecular Pharmaceutics, Vol. 9, Issue 2
  • DOI: 10.1021/mp2002939

Quantum Dot and Cy5.5 Labeled Nanoparticles to Investigate Lipoprotein Biointeractions via Förster Resonance Energy Transfer
journal, December 2010

  • Skajaa, Torjus; Zhao, Yiming; van den Heuvel, Dave J.
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl1037903

Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice
journal, October 2013

  • Zhao, Yiming; van Rooy, Inge; Hak, Sjoerd
  • ACS Nano, Vol. 7, Issue 11
  • DOI: 10.1021/nn404782p

A drug-specific nanocarrier design for efficient anticancer therapy
journal, July 2015

  • Shi, Changying; Guo, Dandan; Xiao, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8449

Understanding biophysicochemical interactions at the nano–bio interface
journal, June 2009

  • Nel, Andre E.; Mädler, Lutz; Velegol, Darrell
  • Nature Materials, Vol. 8, Issue 7
  • DOI: 10.1038/nmat2442

Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection
journal, November 2009

  • Andrew MacKay, J.; Chen, Mingnan; McDaniel, Jonathan R.
  • Nature Materials, Vol. 8, Issue 12
  • DOI: 10.1038/nmat2569

Treating metastatic cancer with nanotechnology
journal, December 2011

  • Schroeder, Avi; Heller, Daniel A.; Winslow, Monte M.
  • Nature Reviews Cancer, Vol. 12, Issue 1
  • DOI: 10.1038/nrc3180

Nanoparticle therapeutics: an emerging treatment modality for cancer
journal, September 2008

  • Davis, Mark E.; Chen, Zhuo; Shin, Dong M.
  • Nature Reviews Drug Discovery, Vol. 7, Issue 9
  • DOI: 10.1038/nrd2614

Targeted polymeric therapeutic nanoparticles: design, development and clinical translation
journal, January 2012

  • Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.
  • Chemical Society Reviews, Vol. 41, Issue 7
  • DOI: 10.1039/c2cs15344k

Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging
journal, September 2007

  • Bartlett, D. W.; Su, H.; Hildebrandt, I. J.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 39
  • DOI: 10.1073/pnas.0707461104

Spatiotemporal controlled delivery of nanoparticles to injured vasculature
journal, January 2010

  • Chan, J. M.; Zhang, L.; Tong, R.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 5
  • DOI: 10.1073/pnas.0914585107

Nanotechnology Applications in Cancer
journal, August 2007


Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction
journal, December 2009


Works referencing / citing this record:

A Step-by-Step Multiple Stimuli-Responsive Nanoplatform for Enhancing Combined Chemo-Photodynamic Therapy
journal, January 2017


Tunable Hydrophile–Lipophile Balance for Manipulating Structural Stability and Tumor Retention of Amphiphilic Nanoparticles
journal, July 2019


Smart cancer nanomedicine
journal, November 2019


Therapeutic targeting of trained immunity
journal, April 2019

  • Mulder, Willem J. M.; Ochando, Jordi; Joosten, Leo A. B.
  • Nature Reviews Drug Discovery, Vol. 18, Issue 7
  • DOI: 10.1038/s41573-019-0025-4

Facile dynamic one-step modular assembly based on boronic acid-diol for construction of a micellar drug delivery system
journal, January 2018

  • Zhao, Zekai; Zhang, Ying; Tian, Chunli
  • Biomaterials Science, Vol. 6, Issue 10
  • DOI: 10.1039/c8bm00712h

Investigating supramolecular systems using Förster resonance energy transfer
journal, January 2018

  • Teunissen, Abraham J. P.; Pérez-Medina, Carlos; Meijerink, Andries
  • Chemical Society Reviews, Vol. 47, Issue 18
  • DOI: 10.1039/c8cs00278a

In situ real-time tracing of hierarchical targeting nanostructures in drug resistant tumors using diffuse fluorescence tomography
journal, January 2019

  • Guo, Qianqian; Wang, Yangyun; Zhang, Limin
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/c9sc01841g

Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery
journal, January 2020


Inhalation of peptide-loaded nanoparticles improves heart failure
journal, January 2018


pH-Sensitive Micelles Based on Star Copolymer Ad-(PCL-b-PDEAEMA-b-PPEGMA)4 for Controlled Drug Delivery
journal, April 2018


Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure
journal, October 2018

  • Massella, Daniele; Celasco, Edvige; Salaün, Fabien
  • Polymers, Vol. 10, Issue 10
  • DOI: 10.3390/polym10101092

pH-Responsive Micelles Assembled by Three-Armed Degradable Block Copolymers with a Cholic Acid Core for Drug Controlled-Release
journal, March 2019


Modular Lipid Nanoparticle Platform Technology for siRNA and Lipophilic Prodrug Delivery
journal, August 2021


Förster Resonance Energy Transfer-Based Stability Assessment of PLGA Nanoparticles in Vitro and in Vivo
journal, January 2019

  • Swider, Edyta; Maharjan, Sanish; Houkes, Karlijne
  • ACS Applied Bio Materials, Vol. 2, Issue 3
  • DOI: 10.1021/acsabm.8b00754

Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release
journal, August 2017

  • Maiolo, Daniele; Pigliacelli, Claudia; Sánchez Moreno, Paola
  • ACS Nano, Vol. 11, Issue 9
  • DOI: 10.1021/acsnano.7b04979

Quantifying Release from Lipid Nanocarriers by Fluorescence Correlation Spectroscopy
journal, October 2018


pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics
journal, March 2020


pH-Sensitive Micelles Based on Star Copolymer Ad-(PCL-b-PDEAEMA-b-PPEGMA)4 for Controlled Drug Delivery
journal, April 2018


Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure
journal, October 2018

  • Massella, Daniele; Celasco, Edvige; Salaün, Fabien
  • Polymers, Vol. 10, Issue 10
  • DOI: 10.3390/polym10101092

Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment
journal, January 2017

  • Chen, Binlong; Dai, Wenbing; He, Bing
  • Theranostics, Vol. 7, Issue 3
  • DOI: 10.7150/thno.16684