DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading

Abstract

Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previousmore » challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1503056
Alternate Identifier(s):
OSTI ID: 1257796
Report Number(s):
SAND2016-4409J
Journal ID: ISSN 0376-9429; PII: 89
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Published Article
Journal Name:
International Journal of Fracture
Additional Journal Information:
Journal Name: International Journal of Fracture Journal Volume: 198 Journal Issue: 1-2; Journal ID: ISSN 0376-9429
Publisher:
Springer Science + Business Media
Country of Publication:
Netherlands
Language:
English
Subject:
36 MATERIALS SCIENCE; fracture; rupture tearing; deformation; plasticity; metal; alloy; simulation; prediction; modeling

Citation Formats

Boyce, B. L., Kramer, S. L. B., Bosiljevac, T. R., Corona, E., Moore, J. A., Elkhodary, K., Simha, C. H. M., Williams, B. W., Cerrone, A. R., Nonn, A., Hochhalter, J. D., Bomarito, G. F., Warner, J. E., Carter, B. J., Warner, D. H., Ingraffea, A. R., Zhang, T., Fang, X., Lua, J., Chiaruttini, V., Mazière, M., Feld-Payet, S., Yastrebov, V. A., Besson, J., Chaboche, J. -L., Lian, J., Di, Y., Wu, B., Novokshanov, D., Vajragupta, N., Kucharczyk, P., Brinnel, V., Döbereiner, B., Münstermann, S., Neilsen, M. K., Dion, K., Karlson, K. N., Foulk, J. W., Brown, A. A., Veilleux, M. G., Bignell, J. L., Sanborn, S. E., Jones, C. A., Mattie, P. D., Pack, K., Wierzbicki, T., Chi, S. -W., Lin, S. -P., Mahdavi, A., Predan, J., Zadravec, J., Gross, A. J., Ravi-Chandar, K., and Xue, L. The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading. Netherlands: N. p., 2016. Web. doi:10.1007/s10704-016-0089-7.
Boyce, B. L., Kramer, S. L. B., Bosiljevac, T. R., Corona, E., Moore, J. A., Elkhodary, K., Simha, C. H. M., Williams, B. W., Cerrone, A. R., Nonn, A., Hochhalter, J. D., Bomarito, G. F., Warner, J. E., Carter, B. J., Warner, D. H., Ingraffea, A. R., Zhang, T., Fang, X., Lua, J., Chiaruttini, V., Mazière, M., Feld-Payet, S., Yastrebov, V. A., Besson, J., Chaboche, J. -L., Lian, J., Di, Y., Wu, B., Novokshanov, D., Vajragupta, N., Kucharczyk, P., Brinnel, V., Döbereiner, B., Münstermann, S., Neilsen, M. K., Dion, K., Karlson, K. N., Foulk, J. W., Brown, A. A., Veilleux, M. G., Bignell, J. L., Sanborn, S. E., Jones, C. A., Mattie, P. D., Pack, K., Wierzbicki, T., Chi, S. -W., Lin, S. -P., Mahdavi, A., Predan, J., Zadravec, J., Gross, A. J., Ravi-Chandar, K., & Xue, L. The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading. Netherlands. https://doi.org/10.1007/s10704-016-0089-7
Boyce, B. L., Kramer, S. L. B., Bosiljevac, T. R., Corona, E., Moore, J. A., Elkhodary, K., Simha, C. H. M., Williams, B. W., Cerrone, A. R., Nonn, A., Hochhalter, J. D., Bomarito, G. F., Warner, J. E., Carter, B. J., Warner, D. H., Ingraffea, A. R., Zhang, T., Fang, X., Lua, J., Chiaruttini, V., Mazière, M., Feld-Payet, S., Yastrebov, V. A., Besson, J., Chaboche, J. -L., Lian, J., Di, Y., Wu, B., Novokshanov, D., Vajragupta, N., Kucharczyk, P., Brinnel, V., Döbereiner, B., Münstermann, S., Neilsen, M. K., Dion, K., Karlson, K. N., Foulk, J. W., Brown, A. A., Veilleux, M. G., Bignell, J. L., Sanborn, S. E., Jones, C. A., Mattie, P. D., Pack, K., Wierzbicki, T., Chi, S. -W., Lin, S. -P., Mahdavi, A., Predan, J., Zadravec, J., Gross, A. J., Ravi-Chandar, K., and Xue, L. Mon . "The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading". Netherlands. https://doi.org/10.1007/s10704-016-0089-7.
@article{osti_1503056,
title = {The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading},
author = {Boyce, B. L. and Kramer, S. L. B. and Bosiljevac, T. R. and Corona, E. and Moore, J. A. and Elkhodary, K. and Simha, C. H. M. and Williams, B. W. and Cerrone, A. R. and Nonn, A. and Hochhalter, J. D. and Bomarito, G. F. and Warner, J. E. and Carter, B. J. and Warner, D. H. and Ingraffea, A. R. and Zhang, T. and Fang, X. and Lua, J. and Chiaruttini, V. and Mazière, M. and Feld-Payet, S. and Yastrebov, V. A. and Besson, J. and Chaboche, J. -L. and Lian, J. and Di, Y. and Wu, B. and Novokshanov, D. and Vajragupta, N. and Kucharczyk, P. and Brinnel, V. and Döbereiner, B. and Münstermann, S. and Neilsen, M. K. and Dion, K. and Karlson, K. N. and Foulk, J. W. and Brown, A. A. and Veilleux, M. G. and Bignell, J. L. and Sanborn, S. E. and Jones, C. A. and Mattie, P. D. and Pack, K. and Wierzbicki, T. and Chi, S. -W. and Lin, S. -P. and Mahdavi, A. and Predan, J. and Zadravec, J. and Gross, A. J. and Ravi-Chandar, K. and Xue, L.},
abstractNote = {Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Instead of evaluating the predictions of a single simulation approach, the Sandia Fracture Challenge relied on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5–68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti–6Al–4V sheet under both quasi-static and modest-rate dynamic loading (failure in ~ 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. In addition, shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the ‘state-of-the-art’ in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.},
doi = {10.1007/s10704-016-0089-7},
journal = {International Journal of Fracture},
number = 1-2,
volume = 198,
place = {Netherlands},
year = {Mon Mar 14 00:00:00 EDT 2016},
month = {Mon Mar 14 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1007/s10704-016-0089-7

Citation Metrics:
Cited by: 69 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling
journal, May 2014


Constitutive modeling of void shearing effect in ductile fracture of porous materials
journal, July 2008


Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures
journal, January 1998


Orthotropic yield criterion for hexagonal closed packed metals
journal, July 2006


On the Effects of Modeling As-Manufactured Geometry: Toward Digital Twin
journal, January 2014

  • Cerrone, Albert; Hochhalter, Jacob; Heber, Gerd
  • International Journal of Aerospace Engineering, Vol. 2014
  • DOI: 10.1155/2014/439278

The mechanics of dynamic shear crack propagation
journal, January 1979


Intergranular fracture during power-law creep under multiaxial stresses
journal, August 1980


Numerical simulation of fracture mode transition in ductile plates
journal, March 2009


Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature
journal, May 2011


Stress based fracture envelope for damage plastic solids
journal, February 2009


Ductile tearing of pipeline-steel wide plates
journal, February 2001


Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities
journal, August 2015


Volumetric locking in the element free Galerkin method
journal, October 1999


Ductile failure behavior of polycrystalline Al 6061-T6
journal, March 2012


A Criterion for Ductile Fracture by the Growth of Holes
journal, June 1968

  • McClintock, F. A.
  • Journal of Applied Mechanics, Vol. 35, Issue 2
  • DOI: 10.1115/1.3601204

The second Sandia Fracture Challenge: blind prediction of dynamic shear localization and full fracture characterization
journal, February 2016


Ductile tearing predictions with Wellman’s failure model
journal, December 2013

  • Neilsen, Michael K.; Dion, Kristin N.; Fang, H. Eliot
  • International Journal of Fracture, Vol. 186, Issue 1-2
  • DOI: 10.1007/s10704-013-9913-5

Modeling and simulation of 2012 Sandia fracture challenge problem: phantom paired shell for Abaqus and plane strain core approach
journal, December 2013

  • Zhang, Tingting; Fang, Eugene; Liu, Phillip
  • International Journal of Fracture, Vol. 186, Issue 1-2
  • DOI: 10.1007/s10704-013-9917-1

Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues
journal, January 2001

  • Alfano, G.; Crisfield, M. A.
  • International Journal for Numerical Methods in Engineering, Vol. 50, Issue 7
  • DOI: 10.1002/nme.93

Modification of the Gurson Model for shear failure
journal, January 2008


A theory of the yielding and plastic flow of anisotropic metals
journal, May 1948

  • Hill, Rodney
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 193, Issue 1033, p. 281-297
  • DOI: 10.1098/rspa.1948.0045

On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity
journal, November 2005

  • Reese, Stefanie
  • Computer Methods in Applied Mechanics and Engineering, Vol. 194, Issue 45-47
  • DOI: 10.1016/j.cma.2004.12.012

Relation between Ductile Fracture Locus and Deformation of Phases in Ti–6Al–4V Alloy
journal, January 2013


Non-local phenomenological damage-mechanics-based modeling of the Drop-Weight Tear Test
journal, March 2014


Prediction of ductile failure in Ti–6Al–4V using a local strain-to-failure criterion
journal, February 2016


FE-simulation of machining processes with a new material model
journal, March 2014


Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V—PART 2: Constitutive modelling and validation
journal, February 2012

  • Odenberger, E. -L.; Schill, M.; Oldenburg, M.
  • International Journal of Material Forming, Vol. 6, Issue 3
  • DOI: 10.1007/s12289-012-1094-7

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Applications of digital-image-correlation techniques to experimental mechanics
journal, September 1985

  • Chu, T. C.; Ranson, W. F.; Sutton, M. A.
  • Experimental Mechanics, Vol. 25, Issue 3
  • DOI: 10.1007/BF02325092

Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading
journal, January 2013


A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets
journal, March 2012

  • Lian, J.; Sharaf, M.; Archie, F.
  • International Journal of Damage Mechanics, Vol. 22, Issue 2
  • DOI: 10.1177/1056789512439319

Improved numerical dissipation for time integration algorithms in structural dynamics
journal, July 1977

  • Hilber, Hans M.; Hughes, Thomas J. R.; Taylor, Robert L.
  • Earthquake Engineering & Structural Dynamics, Vol. 5, Issue 3
  • DOI: 10.1002/eqe.4290050306

The use of coupled nonlocal damage-plasticity to predict crack growth in ductile metal plates
journal, July 2010


Crack propagation in an elastic solid subjected to general loading—I. Constant rate of extension
journal, June 1972


A void–crack nucleation model for ductile metals
journal, November 1999


The Sandia Fracture Challenge: blind round robin predictions of ductile tearing
journal, January 2014

  • Boyce, B. L.; Kramer, S. L. B.; Fang, H. E.
  • International Journal of Fracture, Vol. 186, Issue 1-2
  • DOI: 10.1007/s10704-013-9904-6

Reproducing kernel particle methods
journal, April 1995

  • Liu, Wing Kam; Jun, Sukky; Zhang, Yi Fei
  • International Journal for Numerical Methods in Fluids, Vol. 20, Issue 8-9
  • DOI: 10.1002/fld.1650200824

Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading
journal, August 2007


A fracture criterion for finitely deforming crystalline solids—The dynamic fracture of single crystals
journal, October 2011

  • Elkhodary, K. I.; Zikry, M. A.
  • Journal of the Mechanics and Physics of Solids, Vol. 59, Issue 10
  • DOI: 10.1016/j.jmps.2011.07.004

On the Extraction of Elastic–Plastic Constitutive Properties From Three-Dimensional Deformation Measurements
journal, July 2015

  • Gross, A. J.; Ravi-Chandar, K.
  • Journal of Applied Mechanics, Vol. 82, Issue 7
  • DOI: 10.1115/1.4030322

Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions
journal, September 1997


Predicting lower bound damage curves for high-strength low-alloy steels: LOWER BOUND DAMAGE CURVE
journal, April 2013

  • Münstermann, S.; Schruff, C.; Lian, J.
  • Fatigue & Fracture of Engineering Materials & Structures, Vol. 36, Issue 8
  • DOI: 10.1111/ffe.12046

Ductile fracture locus of Ti–6Al–4V titanium alloy
journal, January 2012


Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures
journal, December 1996

  • Chen, Jiun-Shyan; Pan, Chunhui; Wu, Cheng-Tang
  • Computer Methods in Applied Mechanics and Engineering, Vol. 139, Issue 1-4
  • DOI: 10.1016/S0045-7825(96)01083-3

Evaluation of the cold formability of high-strength low-alloy steel plates with the modified Bai–Wierzbicki damage model
journal, April 2014

  • Lian, J.; Wu, J.; Münstermann, S.
  • International Journal of Damage Mechanics, Vol. 24, Issue 3
  • DOI: 10.1177/1056789514537587

Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals
journal, May 2010


Large scale object-oriented finite element code design
journal, March 1997


Predicting failure of the Second Sandia Fracture Challenge geometry with a real-world, time constrained, over-the-counter methodology
journal, February 2016

  • Cerrone, A. R.; Nonn, A.; Hochhalter, J. D.
  • International Journal of Fracture, Vol. 198, Issue 1-2
  • DOI: 10.1007/s10704-016-0086-x

An analysis of the low temperature, low and high strain-rate deformation of Ti−6Al−4V
journal, May 1989

  • Follansbee, P. S.; Gray, G. T.
  • Metallurgical Transactions A, Vol. 20, Issue 5
  • DOI: 10.1007/BF02651653

Ductile failure under combined shear and tension
journal, May 2013

  • Haltom, S. S.; Kyriakides, S.; Ravi-Chandar, K.
  • International Journal of Solids and Structures, Vol. 50, Issue 10
  • DOI: 10.1016/j.ijsolstr.2012.12.009

Speed-accuracy tradeoff and information processing dynamics
journal, February 1977


A new model of metal plasticity and fracture with pressure and Lode dependence
journal, June 2008


Exploiting the Property Profile of High Strength Steels by Damage Mechanics Approaches *
journal, September 2012

  • Münstermann, Sebastian; Sharaf, Mohamed; Lian, Junhe
  • Materials Testing, Vol. 54, Issue 9
  • DOI: 10.3139/120.110363

Sandia Fracture Challenge: blind prediction and full calibration to enhance fracture predictability
journal, January 2014

  • Pack, Keunhwan; Luo, Meng; Wierzbicki, Tomasz
  • International Journal of Fracture, Vol. 186, Issue 1-2
  • DOI: 10.1007/s10704-013-9923-3

Nonlocal Continuum Damage, Localization Instability and Convergence
journal, June 1988

  • Bazˇant, Zdeneˇk P.; Pijaudier-Cabot, Gilles
  • Journal of Applied Mechanics, Vol. 55, Issue 2
  • DOI: 10.1115/1.3173674

Works referencing / citing this record:

Application of uncertainty quantification techniques to ductile damage predictions in the third Sandia Fracture Challenge
journal, June 2019

  • Sobotka, James C.; McFarland, John M.; Stein, Jeremy
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00364-y

The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal
journal, July 2019

  • Kramer, Sharlotte L. B.; Jones, Amanda; Mostafa, Ahmed
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00361-1

A framework for material calibration and deformation predictions applied to additive manufacturing of metals
journal, June 2019


Sandia Fracture Challenge 3: detailing the Sandia Team Q failure prediction strategy
journal, July 2019

  • Karlson, Kyle N.; Alleman, Coleman; Foulk III, James W.
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00365-x

The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
text, January 2016


The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal
journal, July 2019

  • Kramer, Sharlotte L. B.; Jones, Amanda; Mostafa, Ahmed
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00361-1

Application of uncertainty quantification techniques to ductile damage predictions in the third Sandia Fracture Challenge
journal, June 2019

  • Sobotka, James C.; McFarland, John M.; Stein, Jeremy
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00364-y

Sandia Fracture Challenge 3: detailing the Sandia Team Q failure prediction strategy
journal, July 2019

  • Karlson, Kyle N.; Alleman, Coleman; Foulk III, James W.
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00365-x

A framework for material calibration and deformation predictions applied to additive manufacturing of metals
journal, June 2019


A gradient reproducing kernel collocation method for high order differential equations
journal, May 2019


The third Sandia Fracture Challenge: deterministic and probabilistic modeling of ductile fracture of additively-manufactured material
journal, March 2019

  • Tancogne-Dejean, Thomas; Gorji, Maysam B.; Pack, Keunhwan
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00355-z

The third Sandia Fracture Challenge: from theory to practice in a classroom setting
journal, June 2019

  • Spear, Ashley D.; Czabaj, Michael W.; Newell, Pania
  • International Journal of Fracture, Vol. 218, Issue 1-2
  • DOI: 10.1007/s10704-019-00366-w

Predicting ductile tearing of additively manufactured 316L stainless steel
journal, June 2019


Data-Driven Materials Investigations: The Next Frontier in Understanding and Predicting Fatigue Behavior
journal, May 2018


New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys
journal, January 2018

  • Heckman, Nathan M.; Foiles, Stephen M.; O'Brien, Christopher J.
  • Nanoscale, Vol. 10, Issue 45
  • DOI: 10.1039/c8nr06419a

Ductile fracture prediction of EH36 grade steel based on Hosford–Coulomb model
journal, January 2019


Void growth by dislocation adsorption
text, January 2019