DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films

Abstract

Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured by low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiOx layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu2O follow themore » out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.« less

Authors:
 [1];  [1];  [2];  [1]
  1. Department of Chemistry and Graduate Center for Materials Research, Missouri University of Science and Technology, Rolla, Missouri 65409-1170, United States, and
  2. Department of Materials Science and Engineering and Graduate Center for Materials Research, Missouri University of Science and Technology, Rolla, Missouri 65409-1170, United States
Publication Date:
Research Org.:
Missouri Univ. of Science and Technology, Rolla, MO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1256140
Alternate Identifier(s):
OSTI ID: 1258615
Grant/Contract Number:  
FG02-08ER46518
Resource Type:
Published Article
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Name: ACS Applied Materials and Interfaces Journal Volume: 8 Journal Issue: 24; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electrodeposition; epitaxy; thin films; gold; cuprous oxide; silicon; coincident site lattice

Citation Formats

Switzer, Jay A., Hill, James C., Mahenderkar, Naveen K., and Liu, Ying-Chau. Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films. United States: N. p., 2016. Web. doi:10.1021/acsami.6b04552.
Switzer, Jay A., Hill, James C., Mahenderkar, Naveen K., & Liu, Ying-Chau. Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films. United States. https://doi.org/10.1021/acsami.6b04552
Switzer, Jay A., Hill, James C., Mahenderkar, Naveen K., and Liu, Ying-Chau. Tue . "Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films". United States. https://doi.org/10.1021/acsami.6b04552.
@article{osti_1256140,
title = {Nanometer-Thick Gold on Silicon as a Proxy for Single-Crystal Gold for the Electrodeposition of Epitaxial Cuprous Oxide Thin Films},
author = {Switzer, Jay A. and Hill, James C. and Mahenderkar, Naveen K. and Liu, Ying-Chau},
abstractNote = {Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured by low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiOx layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.},
doi = {10.1021/acsami.6b04552},
journal = {ACS Applied Materials and Interfaces},
number = 24,
volume = 8,
place = {United States},
year = {Tue Jun 07 00:00:00 EDT 2016},
month = {Tue Jun 07 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acsami.6b04552

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A detailed experimental and analytical study of the thermal expansion of dielectric thin films on Si by x-ray reflectivity
journal, September 2006

  • Phung, T. M.; Johnson, D. C.; Antonelli, G. A.
  • Journal of Applied Physics, Vol. 100, Issue 6
  • DOI: 10.1063/1.2353283

Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites
journal, December 2015


Epitaxial Electrodeposition of Fe3O4 on Single-Crystal Au(111)
journal, September 2000


Epitaxial Electrodeposition of Zinc Oxide Nanopillars on Single-Crystal Gold
journal, February 2001

  • Liu, Run; Vertegel, Alexey A.; Bohannan, Eric W.
  • Chemistry of Materials, Vol. 13, Issue 2
  • DOI: 10.1021/cm000763l

Electrodeposited Ceramic Single Crystals
journal, April 1999


Epitaxial Electrodeposition of Fe 3 O 4 Thin Films on the Low-Index Planes of Gold
journal, June 2002

  • Sorenson, Thomas A.; Morton, Simon A.; Waddill, G. Dan
  • Journal of the American Chemical Society, Vol. 124, Issue 25
  • DOI: 10.1021/ja0201101

Electrodeposition of Epitaxial Magnetite Films and Ferrihydrite Nanoribbons on Single-Crystal Gold
journal, October 2009

  • Kulp, Elizabeth A.; Kothari, Hiten M.; Limmer, Steven J.
  • Chemistry of Materials, Vol. 21, Issue 21
  • DOI: 10.1021/cm9013514

Resistance Switching in Electrodeposited Magnetite Superlattices
journal, February 2010

  • Switzer, Jay A.; Gudavarthy, Rakesh V.; Kulp, Elizabeth A.
  • Journal of the American Chemical Society, Vol. 132, Issue 4
  • DOI: 10.1021/ja909295y

Epitaxial electrodeposition of Cu2O films onto InP(001)
journal, September 2003

  • Liu, Run; Bohannan, Eric W.; Switzer, Jay A.
  • Applied Physics Letters, Vol. 83, Issue 10
  • DOI: 10.1063/1.1606503

Electrochemical Synthesis and Nonvolatile Resistance Switching of Mn 3 O 4 Thin Films
journal, July 2014

  • Koza, Jakub A.; Schroen, Ian P.; Willmering, Matthew M.
  • Chemistry of Materials, Vol. 26, Issue 15
  • DOI: 10.1021/cm5014027

An electrodeposited inhomogeneous metal–insulator–semiconductor junction for efficient photoelectrochemical water oxidation
journal, September 2015

  • Hill, James C.; Landers, Alan T.; Switzer, Jay A.
  • Nature Materials, Vol. 14, Issue 11
  • DOI: 10.1038/nmat4408

An Electrochemical Method for CuO Thin Film Deposition from Aqueous Solution
journal, January 2003

  • Poizot, Philippe; Hung, Chen-Jen; Nikiforov, Maxim P.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 2
  • DOI: 10.1149/1.1535753

Electrodeposited Ceramic Superlattices
journal, January 1990


Epitaxial Electrodeposition of High-Aspect-Ratio Cu 2 O(110) Nanostructures on InP(111)
journal, February 2005

  • Liu, Run; Kulp, Elizabeth A.; Oba, Fumiyasu
  • Chemistry of Materials, Vol. 17, Issue 4
  • DOI: 10.1021/cm048296l

The development of epitaxy of nanoclusters on lattice-mismatched substrates: Ag on H–Si surfaces
journal, November 2002


Epitaxial Growth of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates
journal, February 2005


Scanning Tunneling Microscopy of Electrodeposited Ceramic Superlattices
journal, December 1992


Preliminary Studies of GaAs Deposition on Au(100), (110), and (111) Surfaces by Electrochemical Atomic Layer Epitaxy
journal, March 1992

  • Villegas, Ignacio; Stickney, John L.
  • Journal of The Electrochemical Society, Vol. 139, Issue 3
  • DOI: 10.1149/1.2069285

Enantiospecific Electrodeposition of Chiral CuO Films from Copper(II) Complexes of Tartaric and Amino Acids on Single-Crystal Au(001)
journal, November 2004

  • Kothari, Hiten M.; Kulp, Elizabeth A.; Boonsalee, Sansanee
  • Chemistry of Materials, Vol. 16, Issue 22
  • DOI: 10.1021/cm048939x

Electrodeposition of Co x Fe 3– x O 4 Epitaxial Films and Superlattices
journal, January 2013

  • He, Zhen; Koza, Jakub A.; Mu, Guojun
  • Chemistry of Materials, Vol. 25, Issue 2
  • DOI: 10.1021/cm303289t

Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology
journal, April 2005

  • Love, J. Christopher; Estroff, Lara A.; Kriebel, Jennah K.
  • Chemical Reviews, Vol. 105, Issue 4
  • DOI: 10.1021/cr0300789

Shape Control in Epitaxial Electrodeposition:  Cu 2 O Nanocubes on InP(001)
journal, December 2003

  • Liu, Run; Oba, Fumiyasu; Bohannan, Eric W.
  • Chemistry of Materials, Vol. 15, Issue 26
  • DOI: 10.1021/cm034807c

Electrochemical Au deposition on stepped Si(111)-H surfaces: 3D versus 2D growth studied by AFM and X-ray diffraction
journal, May 2009


Room-Temperature Electrochemical Reduction of Epitaxial Magnetite Films to Epitaxial Iron Films
journal, August 2011

  • He, Zhen; Gudavarthy, Rakesh V.; Koza, Jakub A.
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja203975z

Enantiospecific electrodeposition of a chiral catalyst
journal, October 2003

  • Switzer, Jay A.; Kothari, Hiten M.; Poizot, Philippe
  • Nature, Vol. 425, Issue 6957
  • DOI: 10.1038/nature01990

Electrodeposited magnetic layers in the ultrathin limit
journal, October 2010


Preliminary Studies in the Electrodeposition of PbSe/PbTe Superlattice Thin Films via Electrochemical Atomic Layer Deposition (ALD)
journal, December 2006

  • Vaidyanathan, Raman; Cox, Steven M.; Happek, Uwe
  • Langmuir, Vol. 22, Issue 25
  • DOI: 10.1021/la061625z

Electrodeposition of Crystalline Co 3 O 4 —A Catalyst for the Oxygen Evolution Reaction
journal, September 2012

  • Koza, Jakub A.; He, Zhen; Miller, Andrew S.
  • Chemistry of Materials, Vol. 24, Issue 18
  • DOI: 10.1021/cm3012205

Influence of the surface chemistry on the electric-field control of the magnetization of ultrathin films
journal, September 2012


Thermodynamic to Kinetic Transition in Epitaxial Electrodeposition
journal, April 2002

  • Switzer, Jay A.; Kothari, Hiten M.; Bohannan, Eric W.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 16
  • DOI: 10.1021/jp014638o

Heteroepitaxial Growth of Gold Nanostructures on Silicon by Galvanic Displacement
journal, August 2009

  • Sayed, Sayed Y.; Wang, Feng; Malac, Marek
  • ACS Nano, Vol. 3, Issue 9
  • DOI: 10.1021/nn900685a

Metal monolayer deposition by replacement of metal adlayers on electrode surfaces
journal, March 2001


Epitaxial Electrodeposition of a Crystalline Metal Oxide onto Single-Crystalline Silicon
journal, December 2002

  • Switzer, Jay A.; Liu, Run; Bohannan, Eric W.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 48
  • DOI: 10.1021/jp0266188

Underpotential deposition of metals and work function differences
journal, July 1974

  • Kolb, D. M.; Przasnyski, M.; Gerischer, H.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 54, Issue 1
  • DOI: 10.1016/S0022-0728(74)80377-3

Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials
journal, July 2001

  • Herrero, Enrique; Buller, Lisa J.; Abruña, Héctor D.
  • Chemical Reviews, Vol. 101, Issue 7
  • DOI: 10.1021/cr9600363

Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Gold(100)
journal, September 1999

  • Bohannan, Eric W.; Shumsky, Mark G.; Switzer, Jay A.
  • Chemistry of Materials, Vol. 11, Issue 9
  • DOI: 10.1021/cm990304o

Epitaxial Electrodeposition of ZnO on Au(111) from Alkaline Solution:  Exploiting Amphoterism in Zn(II)
journal, August 2006

  • Limmer, Steven J.; Kulp, Elizabeth A.; Switzer, Jay A.
  • Langmuir, Vol. 22, Issue 25
  • DOI: 10.1021/la061185b

Electrochemical growth of ultraflat Au(111) epitaxial buffer layers on H–Si(111)
journal, October 2008

  • Prod’homme, P.; Maroun, F.; Cortès, R.
  • Applied Physics Letters, Vol. 93, Issue 17
  • DOI: 10.1063/1.3006064

Preliminary Studies of the Use of an Automated Flow‐Cell Electrodeposition System for the Formation of CdTe Thin Films by Electrochemical Atomic Layer Epitaxy
journal, September 1995

  • Huang, B. M.; Colletti, L. P.; Gregory, B. W.
  • Journal of The Electrochemical Society, Vol. 142, Issue 9
  • DOI: 10.1149/1.2048677

Epitaxial Electrodeposition of Tin(II) Sulfide Nanodisks on Single-Crystal Au(100)
journal, September 2008

  • Boonsalee, Sansanee; Gudavarthy, Rakesh V.; Bohannan, Eric W.
  • Chemistry of Materials, Vol. 20, Issue 18
  • DOI: 10.1021/cm801502m

Electrodeposition of nanometer-thick ceria films by oxidation of cerium(III)–acetate
journal, May 2007


Electrodeposited Defect Chemistry Superlattices
journal, June 1994


Epitaxial Electrodeposition of Pb−Tl−O Superlattices on Single-Crystal Au(100)
journal, June 2002

  • Kothari, Hiten M.; Vertegel, Alexey A.; Bohannan, Eric W.
  • Chemistry of Materials, Vol. 14, Issue 6
  • DOI: 10.1021/cm020042h