skip to main content

DOE PAGESDOE PAGES

Title: In situ microscopy of the self-assembly of branched nanocrystals in solution

Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.
Authors:
 [1] ;  [2] ;  [1] ; ;  [3] ;  [3] ;  [4]
  1. Univ. of Nebraska-Lincoln, Lincoln, NE (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Istituto Italiano di Tecnologia (IIT), Genova (Italy)
  4. Univ. of Stuttgart, Stuttgart (Germany)
Publication Date:
OSTI Identifier:
1255732
Report Number(s):
BNL--112268-2016-JA
Journal ID: ISSN 2041-1723; KC0403020
Grant/Contract Number:
SC0012704
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY