skip to main content

DOE PAGESDOE PAGES

Title: Tracking down hyper-boosted top quarks

The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directly employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transversemore » boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less
Authors:
 [1] ;  [2] ;  [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Univ. catholique de Louvain, Louvain-la-Neuve, (Belgium)
Publication Date:
OSTI Identifier:
1253891
Grant/Contract Number:
SC0012567
Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2015; Journal Issue: 6; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Research Org:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS jets; hadronic colliders