DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires

Abstract

In this work, the photoluminescence spectra of n-type doped GaAs nanowires, grown by the metal organic chemical vapor deposition method, are measured at 4K and 77 K. Our measurements indicate that an increase in carrier concentration leads to an increase in the complexity of the doping mechanism, which we attribute to the formation of different recombination centers. At high carrier concentrations, we observe a blueshift of the effective band gap energies by up to 25 meV due to the Burstein-Moss shift. Based on the full width at half maximum (FWHM) of the photoluminescence peaks, we estimate the carrier concentrations for these nanowires, which varies from 6 x 1017 cm-3 (lightly doped), to 1.5 x 1018 cm-3 (moderately doped), to 3.5 x 1018 cm-3 (heavily doped) as the partial pressure of the disilane is varied from 0.01 sccm to 1 sccm during the growth process. We find that the growth temperature variation does not affect the radiative recombination mechanism; however, it does lead to a slight enhancement in the optical emission intensities. For GaAs nanowire arrays measured at room temperature, we observe the same general dependence of band gap, FWHM, and carrier concentration on doping.

Authors:
 [1];  [1];  [2];  [3];  [2]
  1. Univ. of Southern California, Los Angeles, CA (United States). Center for Energy Nanoscience and Dept. of Electrical Engineering
  2. Univ. of Southern California, Los Angeles, CA (United States). Center for Energy Nanoscience, Dept. of Chemical Engineering and Materials Science and Dept. of Electrical Engineering
  3. Univ. of Southern California, Los Angeles, CA (United States). Center for Energy Nanoscience, Dept. of Chemical Engineering and Materials Science, Dept. of Physics and Dept. of Electrical Engineering
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Energy Nanoscience (CEN); Univ. of Southern California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470769
Alternate Identifier(s):
OSTI ID: 1251438
Grant/Contract Number:  
SC0001013
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 108; Journal Issue: 18; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; semiconductors; band gap; photoluminescence spectroscopy; Hall effect; nanowires; chemical elements; silicon compounds; doping; phonons; chemical vapor deposition

Citation Formats

Arab, Shermin, Yao, Maoqing, Zhou, Chongwu, Daniel Dapkus, P., and Cronin, Stephen B. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires. United States: N. p., 2016. Web. doi:10.1063/1.4947504.
Arab, Shermin, Yao, Maoqing, Zhou, Chongwu, Daniel Dapkus, P., & Cronin, Stephen B. Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires. United States. https://doi.org/10.1063/1.4947504
Arab, Shermin, Yao, Maoqing, Zhou, Chongwu, Daniel Dapkus, P., and Cronin, Stephen B. Fri . "Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires". United States. https://doi.org/10.1063/1.4947504. https://www.osti.gov/servlets/purl/1470769.
@article{osti_1470769,
title = {Doping concentration dependence of the photoluminescence spectra of n-type GaAs nanowires},
author = {Arab, Shermin and Yao, Maoqing and Zhou, Chongwu and Daniel Dapkus, P. and Cronin, Stephen B.},
abstractNote = {In this work, the photoluminescence spectra of n-type doped GaAs nanowires, grown by the metal organic chemical vapor deposition method, are measured at 4K and 77 K. Our measurements indicate that an increase in carrier concentration leads to an increase in the complexity of the doping mechanism, which we attribute to the formation of different recombination centers. At high carrier concentrations, we observe a blueshift of the effective band gap energies by up to 25 meV due to the Burstein-Moss shift. Based on the full width at half maximum (FWHM) of the photoluminescence peaks, we estimate the carrier concentrations for these nanowires, which varies from 6 x 1017 cm-3 (lightly doped), to 1.5 x 1018 cm-3 (moderately doped), to 3.5 x 1018 cm-3 (heavily doped) as the partial pressure of the disilane is varied from 0.01 sccm to 1 sccm during the growth process. We find that the growth temperature variation does not affect the radiative recombination mechanism; however, it does lead to a slight enhancement in the optical emission intensities. For GaAs nanowire arrays measured at room temperature, we observe the same general dependence of band gap, FWHM, and carrier concentration on doping.},
doi = {10.1063/1.4947504},
journal = {Applied Physics Letters},
number = 18,
volume = 108,
place = {United States},
year = {Fri May 06 00:00:00 EDT 2016},
month = {Fri May 06 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures
journal, January 2011


Sharp‐line photoluminescence of GaAs grown by low‐temperature molecular beam epitaxy
journal, September 1992

  • Yu, P. W.; Reynolds, D. C.; Stutz, C. E.
  • Applied Physics Letters, Vol. 61, Issue 12
  • DOI: 10.1063/1.107561

Controlling the Abruptness of Axial Heterojunctions in III–V Nanowires: Beyond the Reservoir Effect
journal, May 2012

  • Dick, Kimberly A.; Bolinsson, Jessica; Borg, B. Mattias
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl301185x

GaAs Nanowire Array Solar Cells with Axial p–i–n Junctions
journal, May 2014

  • Yao, Maoqing; Huang, Ningfeng; Cong, Sen
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500704r

Temperature effects on the photoluminescence of GaAs grown on Si
journal, January 1989

  • Chen, Y.; Freundlich, A.; Kamada, H.
  • Applied Physics Letters, Vol. 54, Issue 1
  • DOI: 10.1063/1.100829

Low temperature photoluminescence characteristics of carbon doped GaAs
journal, May 1993

  • Kim, Seong‐Il; Kim, Moo‐Sung; Kim, Yong
  • Journal of Applied Physics, Vol. 73, Issue 9
  • DOI: 10.1063/1.352740

Molecular beam epitaxy
journal, January 1975


Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire
journal, March 2009

  • Perea, Daniel E.; Hemesath, Eric R.; Schwalbach, Edwin J.
  • Nature Nanotechnology, Vol. 4, Issue 5
  • DOI: 10.1038/nnano.2009.51

Carrier Lifetime and Mobility Enhancement in Nearly Defect-Free Core−Shell Nanowires Measured Using Time-Resolved Terahertz Spectroscopy
journal, September 2009

  • Parkinson, Patrick; Joyce, Hannah J.; Gao, Qiang
  • Nano Letters, Vol. 9, Issue 9
  • DOI: 10.1021/nl9016336

The use of SnTe as the source of donor impurities in GaAs grown by molecular beam epitaxy
journal, July 1979

  • Collins, Douglas M.
  • Applied Physics Letters, Vol. 35, Issue 1
  • DOI: 10.1063/1.90933

Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth
journal, January 2009

  • Gutsche, Christoph; Regolin, Ingo; Blekker, Kai
  • Journal of Applied Physics, Vol. 105, Issue 2
  • DOI: 10.1063/1.3065536

Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition
journal, October 2015


Spatially resolved Hall effect measurement in a single semiconductor nanowire
journal, October 2012

  • Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.190

High-efficiency GaInP∕GaAs∕InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction
journal, July 2007

  • Geisz, J. F.; Kurtz, Sarah; Wanlass, M. W.
  • Applied Physics Letters, Vol. 91, Issue 2, Article No. 023502
  • DOI: 10.1063/1.2753729

Surface band bending on clean and oxidized (110)-GaAs studied by Raman spectroscopy
journal, December 1980


Hall effect measurements on InAs nanowires
journal, October 2012

  • Blömers, Ch.; Grap, T.; Lepsa, M. I.
  • Applied Physics Letters, Vol. 101, Issue 15
  • DOI: 10.1063/1.4759124

Electrical and Optical Characterization of Surface Passivation in GaAs Nanowires
journal, January 2012

  • Chang, Chia-Chi; Chi, Chun-Yung; Yao, Maoqing
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301391h

InAs nanowire metal-oxide-semiconductor capacitors
journal, June 2008

  • Roddaro, Stefano; Nilsson, Kristian; Astromskas, Gvidas
  • Applied Physics Letters, Vol. 92, Issue 25
  • DOI: 10.1063/1.2949080

Fabry-Pérot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure
journal, January 2009

  • Yang, Lin; Motohisa, Junichi; Fukui, Takashi
  • Optics Express, Vol. 17, Issue 11
  • DOI: 10.1364/OE.17.009337

MBE‐grown insulating oxide films on GaAs
journal, March 1979

  • Ploog, K.; Fischer, A.; Trommer, R.
  • Journal of Vacuum Science and Technology, Vol. 16, Issue 2
  • DOI: 10.1116/1.569929

Electrical characterization of epitaxial layers
journal, January 1976


Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy
journal, January 2012

  • Ketterer, Bernt; Uccelli, Emanuele; Fontcuberta i. Morral, Anna
  • Nanoscale, Vol. 4, Issue 5
  • DOI: 10.1039/c2nr11910b

Laser Transitions in p ‐Type GaAs:Si
journal, July 1969

  • Rossi, J. A.; Holonyak, N.; Dapkus, P. D.
  • Journal of Applied Physics, Vol. 40, Issue 8
  • DOI: 10.1063/1.1658176

The electron effective mass in heavily doped GaAs
journal, June 1979

  • Raymond, A.; Robert, J. L.; Bernard, C.
  • Journal of Physics C: Solid State Physics, Vol. 12, Issue 12
  • DOI: 10.1088/0022-3719/12/12/014

Tin‐doping effects in GaAs films grown by molecular beam epitaxy
journal, September 1978

  • Wood, C. E. C.; Joyce, B. A.
  • Journal of Applied Physics, Vol. 49, Issue 9
  • DOI: 10.1063/1.325517

Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs
journal, February 1976

  • Casey, H. C.; Stern, Frank
  • Journal of Applied Physics, Vol. 47, Issue 2
  • DOI: 10.1063/1.322626

Photoluminescence identification of ∼77‐meV deep acceptor in GaAs
journal, February 1982

  • Yu, Phil Won; Reynolds, D. C.
  • Journal of Applied Physics, Vol. 53, Issue 2
  • DOI: 10.1063/1.330584

Determination of conduction band tail and Fermi energy of heavily Si‐doped GaAs by room‐temperature photoluminescence
journal, September 1995

  • Lee, Nam‐Young; Lee, Kyu‐Jang; Lee, Chul
  • Journal of Applied Physics, Vol. 78, Issue 5
  • DOI: 10.1063/1.359963

Electrical properties and photoluminescence of Te‐doped GaAs grown by molecular beam epitaxy
journal, February 1982

  • De‐Sheng, Jiang; Makita, Y.; Ploog, K.
  • Journal of Applied Physics, Vol. 53, Issue 2
  • DOI: 10.1063/1.330581

Enhanced Fabry-Perot resonance in GaAs nanowires through local field enhancement and surface passivation
journal, July 2014


LASER RECOMBINATION TRANSITION IN p ‐TYPE GaAs
journal, August 1969

  • Rossi, J. A.; Holonyak, N.; Dapkus, P. D.
  • Applied Physics Letters, Vol. 15, Issue 4
  • DOI: 10.1063/1.1652924

Optically pumped room-temperature GaAs nanowire lasers
journal, November 2013


GaAs/AlGaAs Core Multishell Nanowire-Based Light-Emitting Diodes on Si
journal, May 2010

  • Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl9041774

P-Doping Mechanisms in Catalyst-Free Gallium Arsenide Nanowires
journal, May 2010

  • Dufouleur, Joseph; Colombo, Carlo; Garma, Tonko
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl100157w

Measuring the Capacitance of Individual Semiconductor Nanowires for Carrier Mobility Assessment
journal, June 2007

  • Tu, Ryan; Zhang, Li; Nishi, Yoshio
  • Nano Letters, Vol. 7, Issue 6
  • DOI: 10.1021/nl070378w

III–V semiconductor nanowires for optoelectronic device applications
journal, March 2011


Study of carrier concentration in single InP nanowires by luminescence and Hall measurements
journal, January 2015


Effects of twins on the electronic properties of GaAs
journal, July 2013

  • Shimamura, Kohei; Yuan, Zaoshi; Shimojo, Fuyuki
  • Applied Physics Letters, Vol. 103, Issue 2
  • DOI: 10.1063/1.4811746

Modulation Doping of GaAs/AlGaAs Core–Shell Nanowires With Effective Defect Passivation and High Electron Mobility
journal, January 2015

  • Boland, Jessica L.; Conesa-Boj, Sonia; Parkinson, Patrick
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504566t

Carbon-doped GaAs single junction solar microcells grown in multilayer epitaxial assemblies
journal, June 2013

  • Kang, Dongseok; Arab, Shermin; Cronin, Stephen B.
  • Applied Physics Letters, Vol. 102, Issue 25
  • DOI: 10.1063/1.4812399

Photocurrent and photoconductance properties of a GaAs nanowire
journal, August 2009

  • Thunich, S.; Prechtel, L.; Spirkoska, D.
  • Applied Physics Letters, Vol. 95, Issue 8
  • DOI: 10.1063/1.3193540

Works referencing / citing this record:

Resonant Absorption in GaAs-Based Nanowires by Means of Photo-Acoustic Spectroscopy
journal, February 2018

  • Petronijevic, E.; Leahu, G.; Belardini, A.
  • International Journal of Thermophysics, Vol. 39, Issue 3
  • DOI: 10.1007/s10765-018-2365-4

Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires
journal, June 2017

  • Leahu, Grigore; Petronijevic, Emilija; Belardini, Alessandro
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-02839-1

Carrier concentration dependent photoluminescence properties of Si-doped InAs nanowires
journal, February 2018

  • Sonner, M.; Treu, J.; Saller, K.
  • Applied Physics Letters, Vol. 112, Issue 9
  • DOI: 10.1063/1.5019350

Demonstration of n -type behavior in catalyst-free Si-doped GaAs nanowires grown by molecular beam epitaxy
journal, February 2020

  • Ruhstorfer, Daniel; Mejia, Simon; Ramsteiner, Manfred
  • Applied Physics Letters, Vol. 116, Issue 5
  • DOI: 10.1063/1.5134687

Interferometric mapping of material properties using thermal perturbation
journal, February 2018

  • Goetz, Georges; Ling, Tong; Gupta, Tushar
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 11
  • DOI: 10.1073/pnas.1712763115

Doping assessment in GaAs nanowires
journal, April 2018


n -type doping and morphology of GaAs nanowires in Aerotaxy
journal, May 2018

  • Metaferia, Wondwosen; Sivakumar, Sudhakar; Persson, Axel R.
  • Nanotechnology, Vol. 29, Issue 28
  • DOI: 10.1088/1361-6528/aabec0

Investigation of the effect of Manganese doping in CdS nanocrystalline thin films
journal, November 2018


Exploring the Internal Radiative Efficiency of Selective Area Nanowires
journal, June 2019

  • Cavalli, A.; Haverkort, J. E. M.; Bakkers, E. P. A. M.
  • Journal of Nanomaterials, Vol. 2019
  • DOI: 10.1155/2019/6924163

Temperature and doping concentration dependence of the energy band gap in β-Ga_2O_3 thin films grown on sapphire
journal, January 2017

  • Rafique, Subrina; Han, Lu; Mou, Shin
  • Optical Materials Express, Vol. 7, Issue 10
  • DOI: 10.1364/ome.7.003561

Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires
journal, June 2017

  • Leahu, Grigore; Petronijevic, Emilija; Belardini, Alessandro
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-02839-1