skip to main content

DOE PAGESDOE PAGES

Title: Low Group Delay Dispersion Optical Coating for Broad Bandwidth High Reflection at 45° Incidence, P Polarization of Femtosecond Pulses with 900 nm Center Wavelength

We describe an optical coating design suitable for broad bandwidth high reflection (BBHR) at 45° angle of incidence (AOI), P polarization (Ppol) of femtosecond (fs) laser pulses whose wavelengths range from 800 to 1000 nm. The design process is guided by quarter-wave HR coating properties. Our design must afford low group delay dispersion (GDD) for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT). We base the coating on TiO2/SiO2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO2/SiO2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs2 from 843 to 949 nm (45° AOI, Ppol). The design’s GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design.more » Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. Lastly, for the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO2/SiO2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.« less
Authors:
 [1] ;  [1] ;  [2] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)
Publication Date:
OSTI Identifier:
1249069
Report Number(s):
SAND--2016-3071J
Journal ID: ISSN 2079-6412; COATED; 637670
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Coatings
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2079-6412
Publisher:
MDPI
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE optical coatings; broad bandwidth high reflection; low group delay dispersion; high laser-induced damage thresholds