skip to main content

DOE PAGESDOE PAGES

Title: Adaptive reconnection-based arbitrary Lagrangian Eulerian method

We present a new adaptive Arbitrary Lagrangian Eulerian (ALE) method. This method is based on the reconnection-based ALE (ReALE) methodology of Refs. [35], [34] and [6]. The main elements in a standard ReALE method are: an explicit Lagrangian phase on an arbitrary polygonal (in 2D) mesh in which the solution and positions of grid nodes are updated; a rezoning phase in which a new grid is defined by changing the connectivity (using Voronoi tessellation) but not the number of cells; and a remapping phase in which the Lagrangian solution is transferred onto the new grid. Furthermore, in the standard ReALE method, the rezoned mesh is smoothed by using one or several steps toward centroidal Voronoi tessellation, but it is not adapted to the solution in any way.
Authors:
 [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1247151
Report Number(s):
LA-UR--15-21737
Journal ID: ISSN 0021-9991; PII: S0021999115004775
Grant/Contract Number:
AC52-06NA25396
Type:
Accepted Manuscript
Journal Name:
Journal of Computational Physics
Additional Journal Information:
Journal Volume: 299; Journal Issue: C; Journal ID: ISSN 0021-9991
Publisher:
Elsevier
Research Org:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING Reconnection-based Arbitrary Lagrangian Methods (ReALE); R-Adaptation; H-Adaptation