DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

Abstract

Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [6];  [7];  [8];  [3];  [5];  [9];  [5];  [7];  [10];  [5]
  1. Syracuse Univ., Syracuse, NY (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Old Dominion Univ., Norfolk, VA (United States)
  3. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
  4. Carnegie Mellon Univ., Pittsburgh, PA (United States); Duquesne Univ., Pittsburgh, PA (United States)
  5. Univ. of Virginia, Charlottesville, VA (United States)
  6. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Univ. of Virginia, Charlottesville, VA (United States)
  7. Carnegie Mellon Univ., Pittsburgh, PA (United States)
  8. Carnegie Mellon Univ., Pittsburgh, PA (United States); High Energy Accelerator Research Organization (KEK), Ibaraki (Japan)
  9. Carnegie Mellon Univ., Pittsburgh, PA (United States); Univ. of Washington, Seattle, WA (United States)
  10. Syracuse Univ., Syracuse, NY (United States)
Publication Date:
Research Org.:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP)
OSTI Identifier:
1245139
Alternate Identifier(s):
OSTI ID: 1359647
Report Number(s):
JLAB-PHY-16-2236; DOE/OR/23177-3783; arXiv:1601.00251
Journal ID: ISSN 0168-9002; PII: S016890021630119X
Grant/Contract Number:  
AC05-06OR23177; FG02-84ER40146
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 822; Related Information: CC0 1.0 Universal (CC0 1.0), Public Domain Dedication.; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; Compton polarimetry; Fabry–Perot cavity; laser polarization; polarized electron beam

Citation Formats

Rakhman, A., Hafez, Mohamed A., Nanda, Sirish K., Benmokhtar, Fatiha, Camsonne, Alexandre, Cates, Gordon D., Dalton, Mark M., Franklin, Gregg B., Friend, Megan L., Michaels, Robert W., Nelyubin, Vladimir V., Parno, Diana S., Paschke, Kent D., Quinn, Brian P., Souder, Paul A., and Tobias, W. Al. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab. United States: N. p., 2016. Web. doi:10.1016/j.nima.2016.03.085.
Rakhman, A., Hafez, Mohamed A., Nanda, Sirish K., Benmokhtar, Fatiha, Camsonne, Alexandre, Cates, Gordon D., Dalton, Mark M., Franklin, Gregg B., Friend, Megan L., Michaels, Robert W., Nelyubin, Vladimir V., Parno, Diana S., Paschke, Kent D., Quinn, Brian P., Souder, Paul A., & Tobias, W. Al. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab. United States. https://doi.org/10.1016/j.nima.2016.03.085
Rakhman, A., Hafez, Mohamed A., Nanda, Sirish K., Benmokhtar, Fatiha, Camsonne, Alexandre, Cates, Gordon D., Dalton, Mark M., Franklin, Gregg B., Friend, Megan L., Michaels, Robert W., Nelyubin, Vladimir V., Parno, Diana S., Paschke, Kent D., Quinn, Brian P., Souder, Paul A., and Tobias, W. Al. Thu . "A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab". United States. https://doi.org/10.1016/j.nima.2016.03.085. https://www.osti.gov/servlets/purl/1245139.
@article{osti_1245139,
title = {A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab},
author = {Rakhman, A. and Hafez, Mohamed A. and Nanda, Sirish K. and Benmokhtar, Fatiha and Camsonne, Alexandre and Cates, Gordon D. and Dalton, Mark M. and Franklin, Gregg B. and Friend, Megan L. and Michaels, Robert W. and Nelyubin, Vladimir V. and Parno, Diana S. and Paschke, Kent D. and Quinn, Brian P. and Souder, Paul A. and Tobias, W. Al},
abstractNote = {Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.},
doi = {10.1016/j.nima.2016.03.085},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = ,
volume = 822,
place = {United States},
year = {Thu Mar 31 00:00:00 EDT 2016},
month = {Thu Mar 31 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measurement of the Neutron Radius of Pb 208 through Parity Violation in Electron Scattering
journal, March 2012


First Determination of the Weak Charge of the Proton
journal, October 2013


A two-fold increase of carbon cycle sensitivity to tropical temperature variations
journal, January 2014

  • Wang, Xuhui; Piao, Shilong; Ciais, Philippe
  • Nature, Vol. 506, Issue 7487
  • DOI: 10.1038/nature12915

A Møller polarimeter for CW and pulsed intermediate energy electron beams
journal, September 1990

  • Wagner, B.; Andresen, H. G.; Steffens, K. H.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 294, Issue 3
  • DOI: 10.1016/0168-9002(90)90296-I

Coulomb Scattering of Relativistic Electrons by Point Nuclei
journal, September 1956


First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory
journal, July 2002


A Compton backscattering polarimeter for measuring longitudinal electron polarization
journal, September 1998

  • Passchier, I.; Higinbotham, D. W.; Jager, C. W. de
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 414, Issue 2-3
  • DOI: 10.1016/S0168-9002(98)00630-5

The HERA polarimeter and the first observation of electron spin polarization at HERA
journal, May 1993

  • Barber, D. P.; Bremer, H. -D.; Böge, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 329, Issue 1-2
  • DOI: 10.1016/0168-9002(93)90924-7

A backscattered laser polarimeter e+e− storage rings
journal, October 1979


High-Precision Measurement of the Left-Right Z Boson Cross-Section Asymmetry
journal, June 2000


A Fabry–Pérot cavity for Compton polarimetry
journal, June 1998

  • Jorda, J. P.; Burtin, E.; Cavata, Ch.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 412, Issue 1
  • DOI: 10.1016/S0168-9002(98)00226-5

Compton scattering off polarized electrons with a high-finesse Fabry–Pérot Cavity at JLab
journal, March 2001

  • Falletto, N.; Authier, M.; Baylac, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 459, Issue 3
  • DOI: 10.1016/S0168-9002(00)01049-4

Polarization phenomena of electrons and photons. I
journal, January 1954


Laser-Electron Storage Ring
journal, February 1998


MIT inverse Compton source concept
journal, September 2009

  • Graves, W. S.; Brown, W.; Kaertner, F. X.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 608, Issue 1
  • DOI: 10.1016/j.nima.2009.05.042

Compact high-repetition-rate source of coherent 100 eV radiation
journal, July 2013


The Compton backscattering polarimeter of the A4 experiment
journal, July 2005


Accurate measurement of the electron beam polarization in JLab Hall A using Compton polarimetry
journal, October 2005

  • Escoffier, S.; Bertin, P. Y.; Brossard, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 551, Issue 2-3
  • DOI: 10.1016/j.nima.2005.05.067

Upgraded photon calorimeter with integrating readout for the Hall A Compton polarimeter at Jefferson Lab
journal, June 2012

  • Friend, M.; Parno, D.; Benmokhtar, F.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 676
  • DOI: 10.1016/j.nima.2012.02.041

Comparison of modeled and measured performance of a GSO crystal as gamma detector
journal, November 2013

  • Parno, D. S.; Friend, M.; Mamyan, V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 728
  • DOI: 10.1016/j.nima.2013.05.154

Quasi-phase-matched second harmonic generation: tuning and tolerances
journal, January 1992

  • Fejer, M. M.; Magel, G. A.; Jundt, D. H.
  • IEEE Journal of Quantum Electronics, Vol. 28, Issue 11
  • DOI: 10.1109/3.161322

Temperature-dependent Sellmeier equation for the index of refraction, n_e, in congruent lithium niobate
journal, January 1997


Quasi-phasematching
journal, March 2007


Laser phase and frequency stabilization using an optical resonator
journal, June 1983

  • Drever, R. W. P.; Hall, J. L.; Kowalski, F. V.
  • Applied Physics B Photophysics and Laser Chemistry, Vol. 31, Issue 2
  • DOI: 10.1007/BF00702605

Very high Q frequency‐locked Fabry–Perot cavity
journal, August 1996

  • De Riva, A. M.; Zavattini, G.; Marigo, S.
  • Review of Scientific Instruments, Vol. 67, Issue 8
  • DOI: 10.1063/1.1147094

Measurement of ultralow losses in an optical interferometer
journal, January 1992

  • Rempe, G.; Lalezari, R.; Thompson, R. J.
  • Optics Letters, Vol. 17, Issue 5
  • DOI: 10.1364/OL.17.000363

Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity
journal, August 2001


Simple measurement of gain and loss in ultralow loss optical resonators
journal, January 1985


A New Calculus for the Treatment of Optical SystemsI Description and Discussion of the Calculus
journal, January 1941


A New Calculus for the Treatment of Optical SystemsII Proof of Three General Equivalence Theorems
journal, January 1941

  • Hurwitz, Henry; Jones, R. Clark
  • Journal of the Optical Society of America, Vol. 31, Issue 7
  • DOI: 10.1364/JOSA.31.000493

Measurement of the birefringence properties of the reflecting surface of an interferential mirror
journal, August 1993

  • Micossi, P.; Valle, F. Della; Milotti, E.
  • Applied Physics B Photophysics and Laser Chemistry, Vol. 57, Issue 2
  • DOI: 10.1007/BF00425990

Supermirror phase anisotropy measurement
journal, January 1995

  • Jacob, David; Oger, Martial; Vallet, Marc
  • Optics Letters, Vol. 20, Issue 7
  • DOI: 10.1364/OL.20.000671

Measurement of the residual birefringence of interferential mirrors using Fabry-Perot cavity
journal, September 1997

  • Moriwaki, S.; Sakaida, H.; Yuzawa, T.
  • Applied Physics B: Lasers and Optics, Vol. 65, Issue 3
  • DOI: 10.1007/s003400050282

Measurements of birefringence in a suspended sample of fused silica
journal, May 1994


Birefringence-induced losses in interferometers
journal, December 1994


Development of a high average current polarized electron source with long cathode operational lifetime
journal, February 2007

  • Sinclair, C. K.; Adderley, P. A.; Dunham, B. M.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 10, Issue 2
  • DOI: 10.1103/PhysRevSTAB.10.023501

Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

Simple modification of Compton polarimeter to redirect synchrotron radiation
journal, November 2015

  • Benesch, J.; Franklin, G. B.; Quinn, B. P.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 11
  • DOI: 10.1103/PhysRevSTAB.18.112401

Analytical and experimental study of ringing effects in a Fabry–Perot cavity Application to the measurement of high finesses
journal, November 1997

  • Poirson, Jérôme; Bretenaker, Fabien; Vallet, Marc
  • Journal of the Optical Society of America B, Vol. 14, Issue 11
  • DOI: 10.1364/josab.14.002811