DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

Abstract

The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Cornell Univ., Ithaca, NY (United States)
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1469700
Alternate Identifier(s):
OSTI ID: 1245032
Grant/Contract Number:  
SC0014338; SC0011643
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 108; Journal Issue: 13; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Cultrera, L., Gulliford, C., Bartnik, A., Lee, H., and Bazarov, I. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light. United States: N. p., 2016. Web. doi:10.1063/1.4945091.
Cultrera, L., Gulliford, C., Bartnik, A., Lee, H., & Bazarov, I. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light. United States. https://doi.org/10.1063/1.4945091
Cultrera, L., Gulliford, C., Bartnik, A., Lee, H., and Bazarov, I. Fri . "Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light". United States. https://doi.org/10.1063/1.4945091. https://www.osti.gov/servlets/purl/1469700.
@article{osti_1469700,
title = {Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light},
author = {Cultrera, L. and Gulliford, C. and Bartnik, A. and Lee, H. and Bazarov, I.},
abstractNote = {The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.},
doi = {10.1063/1.4945091},
journal = {Applied Physics Letters},
number = 13,
volume = 108,
place = {United States},
year = {Fri Apr 01 00:00:00 EDT 2016},
month = {Fri Apr 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold
journal, June 2015

  • Maxson, Jared; Cultrera, Luca; Gulliford, Colwyn
  • Applied Physics Letters, Vol. 106, Issue 23
  • DOI: 10.1063/1.4922146

Characterization of a superconducting Pb photocathode in a superconducting rf photoinjector cavity
journal, December 2013

  • Barday, R.; Burrill, A.; Jankowiak, A.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 16, Issue 12
  • DOI: 10.1103/PhysRevSTAB.16.123402

Intrinsic emittance reduction of copper cathodes by laser wavelength tuning in an rf photoinjector
journal, March 2015

  • Divall, Marta Csatari; Prat, Eduard; Bettoni, Simona
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 3
  • DOI: 10.1103/PhysRevSTAB.18.033401

Alkali antimonides photocathodes growth using pure metals evaporation from effusion cells
journal, December 2015

  • Cultrera, Luca; Lee, Hyeri; Bazarov, Ivan
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 34, Issue 1
  • DOI: 10.1116/1.4936845

Electron temperature dependence of the electron-phonon coupling strength in double-wall carbon nanotubes
journal, July 2013

  • Chatzakis, Ioannis
  • Applied Physics Letters, Vol. 103, Issue 4
  • DOI: 10.1063/1.4816055

Effect of Sb thickness on the performance of bialkali-antimonide photocathodes
journal, March 2016

  • Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Hernandez-Garcia, Carlos
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 34, Issue 2, Article No. 021509
  • DOI: 10.1116/1.4939563

Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap
journal, September 2014

  • Maxson, Jared; Bazarov, Ivan; Dunham, Bruce
  • Review of Scientific Instruments, Vol. 85, Issue 9
  • DOI: 10.1063/1.4895641

Generation of transform-limited 32-fs pulses from a self-mode-locked Ti:sapphire laser
journal, January 1992

  • Huang, Chung-Po; Kapteyn, Henry C.; Mclntosh, John W.
  • Optics Letters, Vol. 17, Issue 2
  • DOI: 10.1364/OL.17.000139

Future water Cherenkov detectors
conference, January 2015

  • Bergevin, Marc
  • INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2014 (ICoMEIA 2014), AIP Conference Proceedings
  • DOI: 10.1063/1.4919500

Thermal emittance and response time measurements of negative electron affinity photocathodes
journal, March 2008

  • Bazarov, Ivan V.; Dunham, Bruce M.; Li, Yulin
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2838209

Cathode R&D for future light sources
journal, October 2010

  • Dowell, D. H.; Bazarov, I.; Dunham, B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 622, Issue 3
  • DOI: 10.1016/j.nima.2010.03.104

Cold electron beams from cryocooled, alkali antimonide photocathodes
journal, November 2015

  • Cultrera, L.; Karkare, S.; Lee, H.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 11
  • DOI: 10.1103/PhysRevSTAB.18.113401

A novel system for measurement of the transverse electron momentum distribution from photocathodes
journal, January 2015

  • Feng, J.; Nasiatka, J.; Wan, W.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4904930

Measurements of copper and cesium telluride cathodes in a radio-frequency photoinjector
journal, April 2015

  • Prat, Eduard; Bettoni, Simona; Braun, Hans-Heinrich
  • Physical Review Special Topics - Accelerators and Beams, Vol. 18, Issue 4
  • DOI: 10.1103/PhysRevSTAB.18.043401

Electron emission characterization of Mg photocathode grown by pulsed laser deposition within an S -band rf gun
journal, April 2009

  • Cultrera, L.; Gatti, G.; Miglietta, P.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 12, Issue 4
  • DOI: 10.1103/PhysRevSTAB.12.043502

Role of the cesium antimonide layer in the Na2KSb/Cs3Sb photocathode
journal, December 2001

  • Natarajan, Aravind; Kalghatgi, A. T.; Bhat, B. M.
  • Journal of Applied Physics, Vol. 90, Issue 12
  • DOI: 10.1063/1.1413943

Works referencing / citing this record:

A cryogenically cooled high voltage DC photoemission electron source
journal, August 2018

  • Lee, Hyeri; Liu, Xianghong; Cultrera, Luca
  • Review of Scientific Instruments, Vol. 89, Issue 8
  • DOI: 10.1063/1.5024954

Photoemission and degradation of semiconductor photocathode
journal, December 2019


Electron Diagnostics for Extreme High Brightness Nano-Blade Field Emission Cathodes
journal, October 2019


Photoemission and Degradation of Semiconductor Photocathode
text, January 2019

  • Huang, Pengwei; Qian, Houjun; Du, Yingchao
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-05676