skip to main content


This content will become publicly available on March 30, 2017

Title: Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.
 [1] ;  [2]
  1. Univ. of Chicago, Chicago, IL (United States)
  2. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
FERMILAB-PUB--16-018-A; arXiv:1601.00641
Journal ID: ISSN 1538-4357; 1412038
Grant/Contract Number:
Accepted Manuscript
Journal Name:
The Astrophysical Journal
Additional Journal Information:
Journal Volume: 820; Journal Issue: 2; Journal ID: ISSN 1538-4357
Institute of Physics (IOP)
Research Org:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
79 ASTRONOMY AND ASTROPHYSICS cosmology: theory; intergalactic medium; large-scale structure of universe; methods: numerical