skip to main content

DOE PAGESDOE PAGES

Title: Exotic quarks in Twin Higgs models

The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. Wemore » study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. As a result, depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.« less
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Univ. of California, Davis, CA (United States)
  2. Korea Institute for Advanced Study, Seoul (Republic of Korea); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Univ. of California, Davis, CA (United States); Univ. of Maryland, College Park, MD (United States)
Publication Date:
OSTI Identifier:
1242372
Report Number(s):
SLAC-PUB-16592
Journal ID: ISSN 1029-8479; arXiv: 1512.02647
Grant/Contract Number:
AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2016; Journal Issue: 3; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Research Org:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Beyond Standard Model; global symmetries; nonperturbative effects