skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on November 17, 2016

Title: The snowflake divertor

The snowflake magnetic configuration is characterized by the presence of two closely spaced poloidal field nulls that create a characteristic hexagonal (reminiscent of a snowflake) separatrix structure. The magnetic field properties and the plasma behaviour in the snowflake are determined by the simultaneous action of both nulls, this generating a lot of interesting physics, as well as providing a chance for improving divertor performance. One of the most interesting effects of the snowflake geometry is the heat flux sharing between multiple divertor channels. The authors summarise experimental results obtained with the snowflake configuration on several tokamaks. Wherever possible, relation to the existing theoretical models is described. Divertor concepts utilizing the properties of a snowflake configuration are briefly discussed.
Authors:
 [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1241977
Report Number(s):
LLNL-JRNL--669814
Journal ID: ISSN 1070-664X; PHPAEN; TRN: US1600620
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Research Org:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION