DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon nanotubes grown on metal microelectrodes for the detection of dopamine

Abstract

Microelectrodes modified with carbon nanotubes (CNTs) are useful for the detection of neurotransmitters because the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be grown on carbon fiber microelectrodes (CFMEs) but the intrinsic electrochemical activity of carbon fibers makes evaluating the effect of CNT enhancement difficult. Metal wires are highly conductive and many metals have no intrinsic electrochemical activity for dopamine, so we investigated CNTs grown on metal wires as microelectrodes for neurotransmitter detection. In this work, we successfully grew CNTs on niobium substrates for the first time. Instead of planar metal surfaces, metal wires with a diameter of only 25 μm were used as CNT substrates; these have potential in tissue applications due to their minimal tissue damage and high spatial resolution. Scanning electron microscopy shows that aligned CNTs are grown on metal wires after chemical vapor deposition. By use of fast-scan cyclic voltammetry, CNT-coated niobium (CNT-Nb) microelectrodes exhibit higher sensitivity and lower ΔEp value compared to CNTs grown on carbon fibers or other metal wires. The limit of detection for dopamine at CNT-Nb microelectrodes is 11 ± 1 nM, which is approximately 2-fold lower than that of bare CFMEs. Adsorption processes were modeled with a Langmuir isotherm,more » and detection of other neurochemicals was also characterized, including ascorbic acid, 3,4-dihydroxyphenylacetic acid, serotonin, adenosine, and histamine. CNT-Nb microelectrodes were used to monitor stimulated dopamine release in anesthetized rats with high sensitivity. This research demonstrates that CNT-grown metal microelectrodes, especially CNTs grown on Nb microelectrodes, are useful for monitoring neurotransmitters.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2];  [2];  [1]
  1. Univ. of Virginia, Charlottesville, VA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1241476
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Analytical Chemistry
Additional Journal Information:
Journal Volume: 88; Journal Issue: 1; Journal ID: ISSN 0003-2700
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yang, Cheng, Jacobs, Christopher B., Nguyen, Michael, Ganesana, Mallikarjunarao, Zestos, Alexander, Ivanov, Ilia N., Puretzky, Alexander A., Rouleau, Christopher M., Geohegan, David B., and Venton, B. Jill. Carbon nanotubes grown on metal microelectrodes for the detection of dopamine. United States: N. p., 2015. Web. doi:10.1021/acs.analchem.5b01257.
Yang, Cheng, Jacobs, Christopher B., Nguyen, Michael, Ganesana, Mallikarjunarao, Zestos, Alexander, Ivanov, Ilia N., Puretzky, Alexander A., Rouleau, Christopher M., Geohegan, David B., & Venton, B. Jill. Carbon nanotubes grown on metal microelectrodes for the detection of dopamine. United States. https://doi.org/10.1021/acs.analchem.5b01257
Yang, Cheng, Jacobs, Christopher B., Nguyen, Michael, Ganesana, Mallikarjunarao, Zestos, Alexander, Ivanov, Ilia N., Puretzky, Alexander A., Rouleau, Christopher M., Geohegan, David B., and Venton, B. Jill. Mon . "Carbon nanotubes grown on metal microelectrodes for the detection of dopamine". United States. https://doi.org/10.1021/acs.analchem.5b01257. https://www.osti.gov/servlets/purl/1241476.
@article{osti_1241476,
title = {Carbon nanotubes grown on metal microelectrodes for the detection of dopamine},
author = {Yang, Cheng and Jacobs, Christopher B. and Nguyen, Michael and Ganesana, Mallikarjunarao and Zestos, Alexander and Ivanov, Ilia N. and Puretzky, Alexander A. and Rouleau, Christopher M. and Geohegan, David B. and Venton, B. Jill},
abstractNote = {Microelectrodes modified with carbon nanotubes (CNTs) are useful for the detection of neurotransmitters because the CNTs enhance sensitivity and have electrocatalytic effects. CNTs can be grown on carbon fiber microelectrodes (CFMEs) but the intrinsic electrochemical activity of carbon fibers makes evaluating the effect of CNT enhancement difficult. Metal wires are highly conductive and many metals have no intrinsic electrochemical activity for dopamine, so we investigated CNTs grown on metal wires as microelectrodes for neurotransmitter detection. In this work, we successfully grew CNTs on niobium substrates for the first time. Instead of planar metal surfaces, metal wires with a diameter of only 25 μm were used as CNT substrates; these have potential in tissue applications due to their minimal tissue damage and high spatial resolution. Scanning electron microscopy shows that aligned CNTs are grown on metal wires after chemical vapor deposition. By use of fast-scan cyclic voltammetry, CNT-coated niobium (CNT-Nb) microelectrodes exhibit higher sensitivity and lower ΔEp value compared to CNTs grown on carbon fibers or other metal wires. The limit of detection for dopamine at CNT-Nb microelectrodes is 11 ± 1 nM, which is approximately 2-fold lower than that of bare CFMEs. Adsorption processes were modeled with a Langmuir isotherm, and detection of other neurochemicals was also characterized, including ascorbic acid, 3,4-dihydroxyphenylacetic acid, serotonin, adenosine, and histamine. CNT-Nb microelectrodes were used to monitor stimulated dopamine release in anesthetized rats with high sensitivity. This research demonstrates that CNT-grown metal microelectrodes, especially CNTs grown on Nb microelectrodes, are useful for monitoring neurotransmitters.},
doi = {10.1021/acs.analchem.5b01257},
journal = {Analytical Chemistry},
number = 1,
volume = 88,
place = {United States},
year = {Mon Dec 07 00:00:00 EST 2015},
month = {Mon Dec 07 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 77 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors
journal, February 2010

  • Alwarappan, Subbiah; Liu, Guodong; Li, Chen-Zhong
  • Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 6, Issue 1
  • DOI: 10.1016/j.nano.2009.06.003

Oxidation of dopamine on multi-walled carbon nanotubes
journal, January 2012


Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes
journal, February 2011


Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry
journal, February 2011


Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters
journal, August 2014

  • Zestos, Alexander G.; Jacobs, Christopher B.; Trikantzopoulos, Elefterios
  • Analytical Chemistry, Vol. 86, Issue 17
  • DOI: 10.1021/ac5003273

Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo
journal, January 2007

  • Swamy, B. E. Kumara; Venton, B. Jill
  • The Analyst, Vol. 132, Issue 9
  • DOI: 10.1039/b705552h

Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes
journal, January 2011

  • Jacobs, Christopher B.; Vickrey, Trisha L.; Venton, B. Jill
  • The Analyst, Vol. 136, Issue 17
  • DOI: 10.1039/c0an00854k

Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes
journal, June 2013

  • Zestos, Alexander G.; Nguyen, Michael D.; Poe, Brian L.
  • Sensors and Actuators B: Chemical, Vol. 182
  • DOI: 10.1016/j.snb.2013.03.066

Comparison of Nafion- and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection
journal, January 2011

  • Peairs, M. Jennifer; Ross, Ashley E.; Venton, B. Jill
  • Analytical Methods, Vol. 3, Issue 10
  • DOI: 10.1039/c1ay05348e

Advanced Carbon Electrode Materials for Molecular Electrochemistry
journal, July 2008

  • McCreery, Richard L.
  • Chemical Reviews, Vol. 108, Issue 7, p. 2646-2687
  • DOI: 10.1021/cr068076m

Review: Carbon nanotube based electrochemical sensors for biomolecules
journal, March 2010

  • Jacobs, Christopher B.; Peairs, M. Jennifer; Venton, B. Jill
  • Analytica Chimica Acta, Vol. 662, Issue 2, p. 105-127
  • DOI: 10.1016/j.aca.2010.01.009

Fullerene Pipes
journal, May 1998


Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review
journal, August 2015


Electrochemical properties of spaghetti and forest like carbon nanotubes grown on glass substrates
journal, March 2014

  • Álvarez-Martos, Isabel; Fernández-Gavela, Adrián; Rodríguez-García, Jose
  • Sensors and Actuators B: Chemical, Vol. 192
  • DOI: 10.1016/j.snb.2013.10.088

Rapid, Sensitive Detection of Neurotransmitters at Microelectrodes Modified with Self-assembled SWCNT Forests
journal, August 2012

  • Xiao, Ning; Venton, B. Jill
  • Analytical Chemistry, Vol. 84, Issue 18
  • DOI: 10.1021/ac301445w

Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo
journal, March 2014

  • Xiang, Ling; Yu, Ping; Hao, Jie
  • Analytical Chemistry, Vol. 86, Issue 8
  • DOI: 10.1021/ac404232h

Electrochemical dopamine detection: Comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry
journal, March 2008

  • Zachek, Matthew K.; Hermans, Andre; Wightman, R. Mark
  • Journal of Electroanalytical Chemistry, Vol. 614, Issue 1-2
  • DOI: 10.1016/j.jelechem.2007.11.007

Polyeugenol-Modified Platinum Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid
journal, March 1999

  • Ciszewski, Aleksander; Milczarek, Grzegorz
  • Analytical Chemistry, Vol. 71, Issue 5
  • DOI: 10.1021/ac9808223

Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates
journal, February 2012


Nickel Catalyst-Assisted Vertical Growth of Dense Carbon Nanotube Forests on Bulk Copper
journal, February 2011

  • Atthipalli, Gowtam; Epur, Rigved; Kumta, Prashant N.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 9
  • DOI: 10.1021/jp108624n

Spinnable carbon nanotube forests grown on thin, flexible metallic substrates
journal, October 2010


Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors
journal, June 2008


Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils
journal, October 2006

  • Hiraoka, Tatsuki; Yamada, Takeo; Hata, Kenji
  • Journal of the American Chemical Society, Vol. 128, Issue 41
  • DOI: 10.1021/ja0643772

Support−Catalyst−Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films
journal, February 2011

  • Bayer, B. C.; Hofmann, S.; Castellarin-Cudia, C.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 11
  • DOI: 10.1021/jp102986f

Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies
journal, December 2014

  • Kozai, Takashi D. Y.; Jaquins-Gerstl, Andrea S.; Vazquez, Alberto L.
  • ACS Chemical Neuroscience, Vol. 6, Issue 1
  • DOI: 10.1021/cn500256e

Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts
journal, February 2007


The Characterization of Physical Adsorption Systems. I. The Equilibrium Function and Standard Free Energy of Adsorption
journal, July 1953


Is the Free Energy Change of Adsorption Correctly Calculated?
journal, July 2009

  • Liu, Yu
  • Journal of Chemical & Engineering Data, Vol. 54, Issue 7
  • DOI: 10.1021/je800661q

The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes
journal, March 1990

  • Archer, Donald G.; Wang, Peiming
  • Journal of Physical and Chemical Reference Data, Vol. 19, Issue 2
  • DOI: 10.1063/1.555853

Electrochemical Opening of Single-Walled Carbon Nanotubes Filled with Metal Halides and with Closed Ends
journal, June 2008

  • Holloway, Andrew F.; Toghill, Kathryn; Wildgoose, Gregory G.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 28
  • DOI: 10.1021/jp802127p

Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth
journal, November 2010

  • Magrez, Arnaud; Seo, Jin Won; Smajda, Rita
  • Materials, Vol. 3, Issue 11
  • DOI: 10.3390/ma3114871

Growth modes of carbon nanotubes on metal substrates
journal, August 2006

  • Matthews, Kristopher D.; Lemaitre, Maxime G.; Kim, Taekyung
  • Journal of Applied Physics, Vol. 100, Issue 4
  • DOI: 10.1063/1.2219000

Multiwalled Carbon Nanotubes by Chemical Vapor Deposition Using Multilayered Metal Catalysts
journal, June 2002

  • Delzeit, Lance; Nguyen, Cattien V.; Chen, Bin
  • The Journal of Physical Chemistry B, Vol. 106, Issue 22
  • DOI: 10.1021/jp0203898

A generic process of growing aligned carbon nanotube arrays on metals and metal alloys
journal, April 2007


Effects of Metal Underlayer Grain Size on Carbon Nanotube Growth
journal, August 2009

  • Burt, David P.; Whyte, W. Murray; Weaver, John M. R.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 34
  • DOI: 10.1021/jp902117g

Corrosion Behavior of Tantalum and Niobium in Hydrobromic Acid Solutions (II) on Passive Films and Hydrogen Absorption
journal, July 1989

  • Uehara, I.; Sakai, T.; Ishikawa, H.
  • CORROSION, Vol. 45, Issue 7
  • DOI: 10.5006/1.3577870

Solubility of hydrogen in metals
journal, January 1990


Surface effects on the kinetics of hydrogen absorption by metals
journal, February 1982


XPS and laser Raman analysis of hydrogenated amorphous carbon films
journal, March 2003


Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them
journal, May 2009

  • Feng, Xiaofeng; Liu, Kai; Xie, Xu
  • The Journal of Physical Chemistry C, Vol. 113, Issue 22
  • DOI: 10.1021/jp901245u

Carbon Microelectrodes with a Renewable Surface
journal, March 2010

  • Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac902753x

Electrochemical activation of pristine single walled carbon nanotubes: impact on oxygen reduction and other surface sensitive redox processes
journal, January 2014

  • Miller, Thomas S.; Macpherson, Julie V.; Unwin, Patrick R.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 21
  • DOI: 10.1039/c3cp53717j

Charge transfer at partially blocked surfaces
journal, May 1983

  • Amatore, C.; Savéant, J. M.; Tessier, D.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 147, Issue 1-2
  • DOI: 10.1016/S0022-0728(83)80055-2

Fast-Scan Controlled-Adsorption Voltammetry for the Quantification of Absolute Concentrations and Adsorption Dynamics
journal, November 2013

  • Atcherley, Christopher W.; Laude, Nicholas D.; Parent, Kate L.
  • Langmuir, Vol. 29, Issue 48
  • DOI: 10.1021/la402686s

Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
journal, December 2000

  • Bath, Bradley D.; Michael, Darren J.; Trafton, B. Jill
  • Analytical Chemistry, Vol. 72, Issue 24
  • DOI: 10.1021/ac000849y

High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes
journal, May 2014

  • Jacobs, Christopher B.; Ivanov, Ilia N.; Nguyen, Michael D.
  • Analytical Chemistry, Vol. 86, Issue 12
  • DOI: 10.1021/ac404050t

Characterization of Spontaneous, Transient Adenosine Release in the Caudate-Putamen and Prefrontal Cortex
journal, January 2014


Detecting Subsecond Dopamine Release with Fast-Scan Cyclic Voltammetry in Vivo
journal, October 2003


Electrochemical methods for ascorbic acid determination
journal, March 2014


Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry
journal, November 2008


Fast-scan voltammetry of biogenic amines
journal, July 1988

  • Baur, John E.; Kristensen, Eric W.; May, Leslie J.
  • Analytical Chemistry, Vol. 60, Issue 13
  • DOI: 10.1021/ac00164a006

Monitoring Rapid Chemical Communication in the Brain
journal, July 2008

  • Robinson, Donita L.; Hermans, Andre; Seipel, Andrew T.
  • Chemical Reviews, Vol. 108, Issue 7
  • DOI: 10.1021/cr068081q

Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine
journal, January 2012

  • Ross, Ashley E.; Venton, B. Jill
  • The Analyst, Vol. 137, Issue 13
  • DOI: 10.1039/c2an35297d

Minimizing Fouling at Hydrogenated Conical-Tip Carbon Electrodes during Dopamine Detection in Vivo
journal, February 2014

  • Chandra, Shaneel; Miller, Anthony D.; Bendavid, Avi
  • Analytical Chemistry, Vol. 86, Issue 5
  • DOI: 10.1021/ac403283t

Diamond microelectrodes for use in biological environments
journal, September 2005


Tuning Surface Charge and Morphology for the Efficient Detection of Dopamine under the Interferences of Uric Acid, Ascorbic Acid, and Protein Adsorption
journal, September 2015

  • Chen, Chien-Hsun; Luo, Shyh-Chyang
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 39
  • DOI: 10.1021/acsami.5b06526

Head-to-Head Comparisons of Carbon Fiber Microelectrode Coatings for Sensitive and Selective Neurotransmitter Detection by Voltammetry
journal, September 2011

  • Singh, Yogesh S.; Sawarynski, Lauren E.; Dabiri, Pasha D.
  • Analytical Chemistry, Vol. 83, Issue 17
  • DOI: 10.1021/ac2011729

Electrochemical Properties of Different Carbon-Fiber Microelectrodes Using Fast-Scan Cyclic Voltammetry
journal, November 2008


Oxidation of dopamine on multi-walled carbon nanotubes
journal, January 2012


Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe–Co/Al2O3 sol–gel catalysts
journal, February 2007


Spinnable carbon nanotube forests grown on thin, flexible metallic substrates
journal, October 2010


Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes
journal, February 2011


Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry
journal, February 2011


Electrochemical methods for ascorbic acid determination
journal, March 2014


Diamond microelectrodes for use in biological environments
journal, September 2005


Epoxy insulated carbon fiber and carbon nanotube fiber microelectrodes
journal, June 2013

  • Zestos, Alexander G.; Nguyen, Michael D.; Poe, Brian L.
  • Sensors and Actuators B: Chemical, Vol. 182
  • DOI: 10.1016/j.snb.2013.03.066

Electrochemical properties of spaghetti and forest like carbon nanotubes grown on glass substrates
journal, March 2014

  • Álvarez-Martos, Isabel; Fernández-Gavela, Adrián; Rodríguez-García, Jose
  • Sensors and Actuators B: Chemical, Vol. 192
  • DOI: 10.1016/j.snb.2013.10.088

Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors
journal, June 2008


Subsecond Adsorption and Desorption of Dopamine at Carbon-Fiber Microelectrodes
journal, December 2000

  • Bath, Bradley D.; Michael, Darren J.; Trafton, B. Jill
  • Analytical Chemistry, Vol. 72, Issue 24
  • DOI: 10.1021/ac000849y

Head-to-Head Comparisons of Carbon Fiber Microelectrode Coatings for Sensitive and Selective Neurotransmitter Detection by Voltammetry
journal, September 2011

  • Singh, Yogesh S.; Sawarynski, Lauren E.; Dabiri, Pasha D.
  • Analytical Chemistry, Vol. 83, Issue 17
  • DOI: 10.1021/ac2011729

Rapid, Sensitive Detection of Neurotransmitters at Microelectrodes Modified with Self-assembled SWCNT Forests
journal, August 2012

  • Xiao, Ning; Venton, B. Jill
  • Analytical Chemistry, Vol. 84, Issue 18
  • DOI: 10.1021/ac301445w

Minimizing Fouling at Hydrogenated Conical-Tip Carbon Electrodes during Dopamine Detection in Vivo
journal, February 2014

  • Chandra, Shaneel; Miller, Anthony D.; Bendavid, Avi
  • Analytical Chemistry, Vol. 86, Issue 5
  • DOI: 10.1021/ac403283t

High Temporal Resolution Measurements of Dopamine with Carbon Nanotube Yarn Microelectrodes
journal, May 2014

  • Jacobs, Christopher B.; Ivanov, Ilia N.; Nguyen, Michael D.
  • Analytical Chemistry, Vol. 86, Issue 12
  • DOI: 10.1021/ac404050t

Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters
journal, August 2014

  • Zestos, Alexander G.; Jacobs, Christopher B.; Trikantzopoulos, Elefterios
  • Analytical Chemistry, Vol. 86, Issue 17
  • DOI: 10.1021/ac5003273

Carbon Microelectrodes with a Renewable Surface
journal, March 2010

  • Takmakov, Pavel; Zachek, Matthew K.; Keithley, Richard B.
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac902753x

Polyeugenol-Modified Platinum Electrode for Selective Detection of Dopamine in the Presence of Ascorbic Acid
journal, March 1999

  • Ciszewski, Aleksander; Milczarek, Grzegorz
  • Analytical Chemistry, Vol. 71, Issue 5
  • DOI: 10.1021/ac9808223

Tuning Surface Charge and Morphology for the Efficient Detection of Dopamine under the Interferences of Uric Acid, Ascorbic Acid, and Protein Adsorption
journal, September 2015

  • Chen, Chien-Hsun; Luo, Shyh-Chyang
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 39
  • DOI: 10.1021/acsami.5b06526

Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies
journal, December 2014

  • Kozai, Takashi D. Y.; Jaquins-Gerstl, Andrea S.; Vazquez, Alberto L.
  • ACS Chemical Neuroscience, Vol. 6, Issue 1
  • DOI: 10.1021/cn500256e

Advanced Carbon Electrode Materials for Molecular Electrochemistry
journal, July 2008

  • McCreery, Richard L.
  • Chemical Reviews, Vol. 108, Issue 7, p. 2646-2687
  • DOI: 10.1021/cr068076m

Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils
journal, October 2006

  • Hiraoka, Tatsuki; Yamada, Takeo; Hata, Kenji
  • Journal of the American Chemical Society, Vol. 128, Issue 41
  • DOI: 10.1021/ja0643772

Is the Free Energy Change of Adsorption Correctly Calculated?
journal, July 2009

  • Liu, Yu
  • Journal of Chemical & Engineering Data, Vol. 54, Issue 7
  • DOI: 10.1021/je800661q

Support−Catalyst−Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films
journal, February 2011

  • Bayer, B. C.; Hofmann, S.; Castellarin-Cudia, C.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 11
  • DOI: 10.1021/jp102986f

Electrochemical Opening of Single-Walled Carbon Nanotubes Filled with Metal Halides and with Closed Ends
journal, June 2008

  • Holloway, Andrew F.; Toghill, Kathryn; Wildgoose, Gregory G.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 28
  • DOI: 10.1021/jp802127p

Effects of Metal Underlayer Grain Size on Carbon Nanotube Growth
journal, August 2009

  • Burt, David P.; Whyte, W. Murray; Weaver, John M. R.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 34
  • DOI: 10.1021/jp902117g

Fast-Scan Controlled-Adsorption Voltammetry for the Quantification of Absolute Concentrations and Adsorption Dynamics
journal, November 2013

  • Atcherley, Christopher W.; Laude, Nicholas D.; Parent, Kate L.
  • Langmuir, Vol. 29, Issue 48
  • DOI: 10.1021/la402686s

Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo
journal, January 2007

  • Swamy, B. E. Kumara; Venton, B. Jill
  • The Analyst, Vol. 132, Issue 9
  • DOI: 10.1039/b705552h

Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes
journal, January 2011

  • Jacobs, Christopher B.; Vickrey, Trisha L.; Venton, B. Jill
  • The Analyst, Vol. 136, Issue 17
  • DOI: 10.1039/c0an00854k

Comparison of Nafion- and overoxidized polypyrrole-carbon nanotube electrodes for neurotransmitter detection
journal, January 2011

  • Peairs, M. Jennifer; Ross, Ashley E.; Venton, B. Jill
  • Analytical Methods, Vol. 3, Issue 10
  • DOI: 10.1039/c1ay05348e

Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine
journal, January 2012

  • Ross, Ashley E.; Venton, B. Jill
  • The Analyst, Vol. 137, Issue 13
  • DOI: 10.1039/c2an35297d

Electrochemical activation of pristine single walled carbon nanotubes: impact on oxygen reduction and other surface sensitive redox processes
journal, January 2014

  • Miller, Thomas S.; Macpherson, Julie V.; Unwin, Patrick R.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 21
  • DOI: 10.1039/c3cp53717j

Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine
journal, January 2015

  • Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.
  • The Analyst, Vol. 140, Issue 21
  • DOI: 10.1039/c5an01467k

The Dielectric Constant of Water and Debye‐Hückel Limiting Law Slopes
journal, March 1990

  • Archer, Donald G.; Wang, Peiming
  • Journal of Physical and Chemical Reference Data, Vol. 19, Issue 2
  • DOI: 10.1063/1.555853

Fullerene Pipes
journal, May 1998


Solubility of hydrogen in metals
journal, January 1990


Characterization of Spontaneous, Transient Adenosine Release in the Caudate-Putamen and Prefrontal Cortex
journal, January 2014


Detecting Subsecond Dopamine Release with Fast-Scan Cyclic Voltammetry in Vivo
journal, October 2003


Monitoring Rapid Chemical Communication in the Brain
text, January 2008

  • Andre, Hermans,; L., Robinson, Donita; Mark, Wightman, R.
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/hm12-w762

Electrochemical dopamine detection: Comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry
text, January 2008

  • S., McCarty, Gregory; Mark, Wightman, R.; K., Zachek, Matthew
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/xxad-zk98

Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth
journal, November 2010

  • Magrez, Arnaud; Seo, Jin Won; Smajda, Rita
  • Materials, Vol. 3, Issue 11
  • DOI: 10.3390/ma3114871

Works referencing / citing this record:

Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy
journal, July 2018

  • Sáenz, Henry Steven Catota; Hernández-Saravia, Lucas Patricio; Selva, Jéssica S. G.
  • Microchimica Acta, Vol. 185, Issue 8
  • DOI: 10.1007/s00604-018-2898-z

Recent advances in fast-scan cyclic voltammetry
journal, January 2020

  • Puthongkham, Pumidech; Venton, B. Jill
  • The Analyst, Vol. 145, Issue 4
  • DOI: 10.1039/c9an01925a

A Novel Electrochemical Sensor Based on Copper-based Metal-Organic Framework for the Determination of Dopamine: HKUST-1/GCE for DA Detection
journal, February 2018

  • Li, Jun; Xia, Jianfei; Zhang, Feifei
  • Journal of the Chinese Chemical Society, Vol. 65, Issue 6
  • DOI: 10.1002/jccs.201700410

Ultra-Capacitive Carbon Neural Probe Allows Simultaneous Long-Term Electrical Stimulations and High-Resolution Neurotransmitter Detection
journal, May 2018

  • Nimbalkar, Surabhi; Castagnola, Elisa; Balasubramani, Arvind
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-25198-x

Schiff-base reaction induced selective sensing of trace dopamine based on a Pt41Rh59 alloy/ZIF-90 nanocomposite
journal, May 2019


A General Approach Based on Sampled-Current Voltammetry for Minimizing Electrode Fouling in Electroanalytical Detection
journal, November 2017

  • Mazerie, Isabelle; Didier, Pierre; Razan, Florence
  • ChemElectroChem, Vol. 5, Issue 1
  • DOI: 10.1002/celc.201700884

Carbon-Nanotube-Based Materials for Electrochemical Sensing of the Neurotransmitter Dopamine
journal, December 2018


Polymer modified carbon fiber-microelectrodes and waveform modifications enhance neurotransmitter metabolite detection
journal, January 2019

  • Raju, Dilpreet; Mendoza, Alexander; Wonnenberg, Pauline
  • Analytical Methods, Vol. 11, Issue 12
  • DOI: 10.1039/c8ay02737d

Selective Detection of Dopamine at the AACVD Synthesized Palladium Nanoparticles and Understanding the Sensing Mechanism through Electrochemical and Computational Study
journal, January 2019

  • Hasan, Md. Mahedi; Ehsan, Muhammad Ali; Islam, Tamanna
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.0631915jes

Exfoliation and Sensitization of 2D Carbon Nitride for Photoelectrochemical Biosensing under Red Light
journal, December 2019

  • Zhao, Lufang; Ji, Jingjing; Shen, Yanfei
  • Chemistry – A European Journal, Vol. 25, Issue 68
  • DOI: 10.1002/chem.201904076

Microelectrode Biosensors for in vivo Analysis of Brain Interstitial Fluid
journal, April 2018

  • Chatard, Charles; Meiller, Anne; Marinesco, Stéphane
  • Electroanalysis, Vol. 30, Issue 6
  • DOI: 10.1002/elan.201700836

Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection
journal, January 2019

  • Cao, Qun; Puthongkham, Pumidech; Venton, B. Jill
  • Analytical Methods, Vol. 11, Issue 3
  • DOI: 10.1039/c8ay02472c

Review—Microelectrodes: An Overview of Probe Development and Bioelectrochemistry Applications from 2013 to 2018
journal, January 2019

  • Moussa, Siba; Mauzeroll, Janine
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0741906jes

Carbon Nanoelectrodes for the Electrochemical Detection of Neurotransmitters
journal, August 2018

  • Zestos, Alexander G.
  • International Journal of Electrochemistry, Vol. 2018
  • DOI: 10.1155/2018/3679627

Surface PEDOT:Nafion Coatings for Enhanced Dopamine, Serotonin and Adenosine Sensing
journal, January 2017

  • Demuru, Silvia; Deligianni, Hariklia
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.1461714jes

Fundamentals of fast-scan cyclic voltammetry for dopamine detection
journal, January 2020


Ultra-Capacitive Carbon Neural Probe Allows Simultaneous Long-Term Electrical Stimulations and High-Resolution Neurotransmitter Detection
journal, May 2018

  • Nimbalkar, Surabhi; Castagnola, Elisa; Balasubramani, Arvind
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-25198-x

Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection
journal, January 2019

  • Cao, Qun; Puthongkham, Pumidech; Venton, B. Jill
  • Analytical Methods, Vol. 11, Issue 3
  • DOI: 10.1039/c8ay02472c