DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

Abstract

In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. Frommore » improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.« less

Authors:
 [1];  [2];  [2];  [3];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Khalifa Univ. of Science, Abu Dhabi (United Arab Emirates)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1240552
Alternate Identifier(s):
OSTI ID: 1341761
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 814; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; Predelay; Neutron coincidence counting; Deadtime

Citation Formats

Croft, Stephen, Favalli, Andrea, Swinhoe, Martyn T., Goddard, Braden, and Stewart, Scott. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting. United States: N. p., 2016. Web. doi:10.1016/j.nima.2016.01.022.
Croft, Stephen, Favalli, Andrea, Swinhoe, Martyn T., Goddard, Braden, & Stewart, Scott. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting. United States. https://doi.org/10.1016/j.nima.2016.01.022
Croft, Stephen, Favalli, Andrea, Swinhoe, Martyn T., Goddard, Braden, and Stewart, Scott. Wed . "The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting". United States. https://doi.org/10.1016/j.nima.2016.01.022. https://www.osti.gov/servlets/purl/1240552.
@article{osti_1240552,
title = {The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting},
author = {Croft, Stephen and Favalli, Andrea and Swinhoe, Martyn T. and Goddard, Braden and Stewart, Scott},
abstractNote = {In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.},
doi = {10.1016/j.nima.2016.01.022},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 814,
place = {United States},
year = {Wed Jan 13 00:00:00 EST 2016},
month = {Wed Jan 13 00:00:00 EST 2016}
}

Journal Article:

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: