skip to main content

DOE PAGESDOE PAGES

Title: Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ±0.06 g/cm3. Additional characterization of the pellets by scaning electron microscopy and X-ray diffraction has also been performed. As a result, pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.
Authors:
 [1] ;  [1] ;  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
OSTI Identifier:
1239870
Report Number(s):
INL/JOU--15-34239
Journal ID: ISSN 0022-3115; TRN: US1600468
Grant/Contract Number:
AC07-05ID14517
Type:
Accepted Manuscript
Journal Name:
Journal of Nuclear Materials
Additional Journal Information:
Journal Volume: 466; Journal Issue: C; Journal ID: ISSN 0022-3115
Publisher:
Elsevier
Research Org:
Idaho National Laboratory (INL), Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS accident tolerant fuel; powder metallurgy; uranium silicide