DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

Abstract

The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2-zSz. We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y≈1.5), the block AF phase with 5×5 iron vacancy order (y≈1.6), and the iron vacancy-free phase (y≈2); and (ii) the iron vacancy-free superconducting phase (z=0) evolves into an iron vacancy-free metallic phase with sulfur substitution (z > 1.5) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y > 1.6) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the 5×5 iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

Authors:
 [1];  [1];  [2];  [3];  [4]
  1. Univ. of California, Berkeley, CA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1333659
Alternate Identifier(s):
OSTI ID: 1239707; OSTI ID: 1439986
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231; AC03-76SF008
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 7; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wang, Meng, Yi, Ming, Tian, Wei, Bourret-Courchesne, Edith, and Birgeneau, Robert J. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.93.075155.
Wang, Meng, Yi, Ming, Tian, Wei, Bourret-Courchesne, Edith, & Birgeneau, Robert J. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides. United States. https://doi.org/10.1103/PhysRevB.93.075155
Wang, Meng, Yi, Ming, Tian, Wei, Bourret-Courchesne, Edith, and Birgeneau, Robert J. Mon . "Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides". United States. https://doi.org/10.1103/PhysRevB.93.075155. https://www.osti.gov/servlets/purl/1333659.
@article{osti_1333659,
title = {Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides},
author = {Wang, Meng and Yi, Ming and Tian, Wei and Bourret-Courchesne, Edith and Birgeneau, Robert J.},
abstractNote = {The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2-zSz. We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y≈1.5), the block AF phase with 5×5 iron vacancy order (y≈1.6), and the iron vacancy-free phase (y≈2); and (ii) the iron vacancy-free superconducting phase (z=0) evolves into an iron vacancy-free metallic phase with sulfur substitution (z > 1.5) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y > 1.6) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the 5×5 iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.},
doi = {10.1103/PhysRevB.93.075155},
journal = {Physical Review B},
number = 7,
volume = 93,
place = {United States},
year = {Mon Feb 29 00:00:00 EST 2016},
month = {Mon Feb 29 00:00:00 EST 2016}
}

Journal Article:

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electronic and magnetic phase diagram in KxFe2-ySe2 superconductors
journal, January 2012

  • Yan, Y. J.; Zhang, M.; Wang, A. F.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00212

Superconductivity in the PbO-type structure  -FeSe
journal, September 2008

  • Hsu, F. -C.; Luo, J. -Y.; Yeh, K. -W.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 38
  • DOI: 10.1073/pnas.0807325105

High-Pressure Single-Crystal Neutron Scattering Study of Magnetic and Fe Vacancy Orders in (Tl,Rb) 2 Fe 4 Se 5 Superconductor
journal, December 2014


Identification of Various Coexisting Phases in Superconducting and Non-superconducting Samples of Rb x Fe 2− y Se 2
journal, April 2015

  • Kobayashi, Yoshiaki; Kototani, Shohei; Ohishi, Kazuki
  • Journal of the Physical Society of Japan, Vol. 84, Issue 4
  • DOI: 10.7566/JPSJ.84.044710

Structural Phase Separation in K 0.8 Fe 1.6+ x Se 2 Superconductors
journal, August 2012

  • Wang, Zhi-Wei; Wang, Zhen; Song, Yuan-Jun
  • The Journal of Physical Chemistry C, Vol. 116, Issue 33
  • DOI: 10.1021/jp306310m

Mott localization in a pure stripe antiferromagnet Rb 1 δ Fe 1.5 σ S 2
journal, September 2015


Two spatially separated phases in semiconducting Rb 0.8 Fe 1.5 S 2
journal, September 2014


Fe-based superconductivity with T c =31 K bordering an antiferromagnetic insulator in (Tl,K) Fe x Se 2
journal, April 2011


Phase relations in K x Fe 2 y Se 2 and the structure of superconducting K x Fe 2 Se 2 via high-resolution synchrotron diffraction
journal, November 2012


Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2
journal, September 2011

  • Wang, Miaoyin; Fang, Chen; Yao, Dao-Xin
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1573

Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3
journal, November 2014

  • Ge, Jian-Feng; Liu, Zhi-Long; Liu, Canhua
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4153

Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2
journal, January 2012

  • Yuan, R. H.; Dong, T.; Song, Y. J.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00221

Phase Diagram of K x Fe 2 y Se 2 z S z and the Suppression of its Superconducting State by an Fe 2 Se / S Tetrahedron Distortion
journal, September 2011


Spin waves and spatially anisotropic exchange interactions in the S = 2 stripe antiferromagnet Rb 0.8 Fe 1.5 S 2
journal, July 2015


Role of the 245 phase in alkaline iron selenide superconductors revealed by high-pressure studies
journal, March 2014


Superconductivity in LiFeO 2 Fe 2 Se 2 with anti-PbO-type spacer layers
journal, January 2014


A Novel Large Moment Antiferromagnetic Order in K 0.8 Fe 1.6 Se 2 Superconductor
journal, August 2011


Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure
journal, June 2009

  • Medvedev, S.; McQueen, T. M.; Troyan, I. A.
  • Nature Materials, Vol. 8, Issue 8
  • DOI: 10.1038/nmat2491

Bandwidth and Electron Correlation-Tuned Superconductivity in Rb 0.8 Fe 2 ( Se 1 z S z ) 2
journal, December 2015


KFe 2 Se 2 is the Parent Compound of K-Doped Iron Selenide Superconductors
journal, July 2012


Antiferromagnetic order and superlattice structure in nonsuperconducting and superconducting Rb y Fe 1.6 + x Se 2
journal, September 2011


Observation of superconductivity at 30∼46K in AxFe2Se2(A = Li, Na, Ba, Sr, Ca, Yb and Eu)
journal, May 2012

  • Ying, T. P.; Chen, X. L.; Wang, G.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00426

Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer
journal, October 2012

  • Burrard-Lucas, Matthew; Free, David G.; Sedlmaier, Stefan J.
  • Nature Materials, Vol. 12, Issue 1
  • DOI: 10.1038/nmat3464

Superconductivity in the iron selenide K x Fe 2 Se 2 ( 0 x 1.0 )
journal, November 2010


Intrinsic phase separation in superconducting K 0.8 Fe 1.6 Se 2 ( T c = 31.8 K) single crystals
journal, July 2011


Correlation between superconductivity and antiferromagnetism in Rb 0.8 Fe 2 y Se 2 x Te x single crystals
journal, May 2012


Influence of microstructure on superconductivity in KxFe2−ySe2 and evidence for a new parent phase K2Fe7Se8
journal, May 2013

  • Ding, Xiaxin; Fang, Delong; Wang, Zhenyu
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2913

Two-dimensional Cs-vacancy superstructure in iron-based superconductor Cs 0.8 Fe 1.6 Se 2
journal, April 2015


Cu/Te substitution effects on superconductivity and microstructure of phase-separated K 0.8 Fe 1.75 Se 2
journal, May 2013


Metastable superconducting state in quenched K x Fe 2− y Se 2
journal, July 2012


Superconductivity in iron compounds
journal, December 2011


Phase separation in superconducting and antiferromagnetic Rb 0.8 Fe 1.6 Se 2 probed by Mössbauer spectroscopy
journal, November 2011


NMR Study in the Iron-Selenide Rb 0.74 Fe 1.6 Se 2 : Determination of the Superconducting Phase as Iron Vacancy-Free Rb 0.3 Fe 2 Se 2
journal, June 2012


Structure and composition of the superconducting phase in alkali iron selenide K y Fe 1.6 + x Se 2
journal, April 2014


Nanoscale Layering of Antiferromagnetic and Superconducting Phases in Rb 2 Fe 4 Se 5 Single Crystals
journal, July 2012


Superconductivity at 32 K in single-crystalline Rb x Fe 2 y Se 2
journal, February 2011


Superconductivity at the border of electron localization and itinerancy
journal, November 2013

  • Yu, Rong; Goswami, Pallab; Si, Qimiao
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3783

The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides
journal, October 2010


Colloquium : The unexpected properties of alkali metal iron selenide superconductors
journal, May 2013


Superconductivity at the Border of Electron Localization and Itinerancy
text, January 2011


Superconductivity in Iron Compounds
text, January 2011


Intrinsic phase separation in superconducting K0.8Fe1.6Se2 (Tc= 31.8 K) single crystals
text, January 2011


Enhancement of superconducting transition temperature of FeSe by intercalation of a molecular spacer layer
text, January 2012


Works referencing / citing this record:

Iron-Based Chalcogenide Spin Ladder BaFe2X3 (X = Se,S)
journal, November 2019

  • Wu, Shan; Frandsen, Benjamin A.; Wang, Meng
  • Journal of Superconductivity and Novel Magnetism, Vol. 33, Issue 1
  • DOI: 10.1007/s10948-019-05304-4

Control of dopant crystallinity in electrochemically treated cuprate thin films
journal, June 2019


Control of dopant crystallinity in electrochemically treated cuprate thin films
text, January 2019