skip to main content

DOE PAGESDOE PAGES

Title: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors

Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ~1015 cm-2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. As a result, our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm).
Authors:
 [1] ;  [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1]
  1. Univ. of Wisconsin, Milwaukee, WI (United States)
  2. Northwestern Univ., Evanston, IL (United States)
Publication Date:
OSTI Identifier:
1239312
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
University of Wisconsin, Milwaukee, WI (United States); Northwestern University, Evanston, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE chemical sciences; nanotechnology; materials science; physical chemistry