skip to main content

DOE PAGESDOE PAGES

Title: A path to practical Solar Pumped Lasers via Radiative Energy Transfer

The optical conversion of incoherent solar radiation into a bright, coherent laser beam enables the application of nonlinear optics to solar energy conversion and storage. Here, we present an architecture for solar pumped lasers that uses a luminescent solar concentrator to decouple the conventional trade-off between solar absorption efficiency and the mode volume of the optical gain material. We report a 750-μm-thick Nd 3+ -doped YAG planar waveguide sensitized by a luminescent CdSe/CdZnS (core/shell) colloidal nanocrystal, yielding a peak cascade energy transfer of 14%, a broad spectral response in the visible portion of the solar spectrum, and an equivalent quasi-CW solar lasing threshold of 23 W-cm-2, or approximately 230 suns. The efficient coupling of incoherent, spectrally broad sunlight in small gain volumes should allow the generation of coherent laser light from intensities of less than 100 suns.
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Technion-Israel Inst. of Technology, Haifa (Israel)
Publication Date:
OSTI Identifier:
1239277
Grant/Contract Number:
SC0001088
Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Research Org:
Inst. of Technology, Cambridge, MA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
Language:
English
Subject:
semiconductor lasers; solid-state lasers