skip to main content

DOE PAGESDOE PAGES

Title: Mullins effect in a filled elastomer under uniaxial tension

Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading) two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
1237547
Report Number(s):
LLNL-JRNL--641518
Journal ID: ISSN 2470-0045
Grant/Contract Number:
AC52-07NA27344
Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 89; Journal Issue: 1; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Research Org:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY