DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: General 2.5 power law of metallic glasses

Abstract

Metallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its “disordered” structure. Recently we found that under compression, the volume ( V ) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/ q 1 ). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce 68 Al 10 Cu 20 Co 2 MG. This transition is, in effect, the equivalent of a continuous “composition” change of 4 f -localized “big Ce” to 4 f -itinerant “small Ce,” indicating the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1236653
Alternate Identifier(s):
OSTI ID: 1238286
Grant/Contract Number:  
AC02-06CH11357; EAR 11-57758; EAR-1128799; FG02-94ER14466; FG02-99ER45775; U1530402; NSF-EAR-1055454; NA0001974
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 113 Journal Issue: 7; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; general structure–property relationship; polyamorphic transition; pressure effect; composition effect; atomic packing

Citation Formats

Zeng, Qiaoshi, Lin, Yu, Liu, Yijin, Zeng, Zhidan, Shi, Crystal Y., Zhang, Bo, Lou, Hongbo, Sinogeikin, Stanislav V., Kono, Yoshio, Kenney-Benson, Curtis, Park, Changyong, Yang, Wenge, Wang, Weihua, Sheng, Hongwei, Mao, Ho-kwang, and Mao, Wendy L. General 2.5 power law of metallic glasses. United States: N. p., 2016. Web. doi:10.1073/pnas.1525390113.
Zeng, Qiaoshi, Lin, Yu, Liu, Yijin, Zeng, Zhidan, Shi, Crystal Y., Zhang, Bo, Lou, Hongbo, Sinogeikin, Stanislav V., Kono, Yoshio, Kenney-Benson, Curtis, Park, Changyong, Yang, Wenge, Wang, Weihua, Sheng, Hongwei, Mao, Ho-kwang, & Mao, Wendy L. General 2.5 power law of metallic glasses. United States. https://doi.org/10.1073/pnas.1525390113
Zeng, Qiaoshi, Lin, Yu, Liu, Yijin, Zeng, Zhidan, Shi, Crystal Y., Zhang, Bo, Lou, Hongbo, Sinogeikin, Stanislav V., Kono, Yoshio, Kenney-Benson, Curtis, Park, Changyong, Yang, Wenge, Wang, Weihua, Sheng, Hongwei, Mao, Ho-kwang, and Mao, Wendy L. Mon . "General 2.5 power law of metallic glasses". United States. https://doi.org/10.1073/pnas.1525390113.
@article{osti_1236653,
title = {General 2.5 power law of metallic glasses},
author = {Zeng, Qiaoshi and Lin, Yu and Liu, Yijin and Zeng, Zhidan and Shi, Crystal Y. and Zhang, Bo and Lou, Hongbo and Sinogeikin, Stanislav V. and Kono, Yoshio and Kenney-Benson, Curtis and Park, Changyong and Yang, Wenge and Wang, Weihua and Sheng, Hongwei and Mao, Ho-kwang and Mao, Wendy L.},
abstractNote = {Metallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its “disordered” structure. Recently we found that under compression, the volume ( V ) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/ q 1 ). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce 68 Al 10 Cu 20 Co 2 MG. This transition is, in effect, the equivalent of a continuous “composition” change of 4 f -localized “big Ce” to 4 f -itinerant “small Ce,” indicating the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs.},
doi = {10.1073/pnas.1525390113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 7,
volume = 113,
place = {United States},
year = {Mon Feb 01 00:00:00 EST 2016},
month = {Mon Feb 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1525390113

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A predictive structural model for bulk metallic glasses
journal, September 2015

  • Laws, K. J.; Miracle, D. B.; Ferry, M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9123

Bulk Metallic Glasses
journal, February 2013


Poisson's ratio and modern materials
journal, October 2011

  • Greaves, G. N.; Greer, A. L.; Lakes, R. S.
  • Nature Materials, Vol. 10, Issue 11
  • DOI: 10.1038/nmat3134

Long-Range Topological Order in Metallic Glass
journal, June 2011


Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys
journal, July 2008


Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network
journal, July 2007


A structural model for metallic glasses
journal, September 2004


Intrinsic plasticity or brittleness of metallic glasses
journal, February 2005

  • Lewandowski *, J. J.; Wang, W. H.; Greer, A. L.
  • Philosophical Magazine Letters, Vol. 85, Issue 2
  • DOI: 10.1080/09500830500080474

Atomic size effect on the formability of metallic glasses
journal, April 1984


The density and packing fraction of binary metallic glasses
journal, May 2013


A Universal Criterion for Plastic Yielding of Metallic Glasses with a ( T / T g ) 2 / 3 Temperature Dependence
journal, November 2005


Polyamorphism in a metallic glass
journal, February 2007

  • Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.
  • Nature Materials, Vol. 6, Issue 3
  • DOI: 10.1038/nmat1839

Substitutional alloy of Ce and Al
journal, February 2009

  • Zeng, Qiao-Shi; Ding, Yang; Mao, Wendy L.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 8
  • DOI: 10.1073/pnas.0813328106

TXM-Wizard : a program for advanced data collection and evaluation in full-field transmission X-ray microscopy
journal, January 2012

  • Liu, Yijin; Meirer, Florian; Williams, Phillip A.
  • Journal of Synchrotron Radiation, Vol. 19, Issue 2
  • DOI: 10.1107/S0909049511049144

Correlations between elastic moduli and properties in bulk metallic glasses
journal, May 2006


Ductile Bulk Metallic Glass
journal, December 2004


Compositional landscape for glass formation in metal alloys
journal, June 2014

  • Na, J. H.; Demetriou, M. D.; Floyd, M.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 25
  • DOI: 10.1073/pnas.1407780111

An introduction to percolation theory
journal, May 1971


Stabilization of metallic supercooled liquid and bulk amorphous alloys
journal, January 2000


Electronic Structure Inheritance and Pressure-Induced Polyamorphism in Lanthanide-Based Metallic Glasses
journal, September 2012


High pressure nano-tomography using an iterative method
journal, June 2012

  • Wang, Junyue; Yang, Wenge; Wang, Steve
  • Journal of Applied Physics, Vol. 111, Issue 11
  • DOI: 10.1063/1.4726249

Unified equation for the strength of bulk metallic glasses
journal, May 2006

  • Yang, B.; Liu, C. T.; Nieh, T. G.
  • Applied Physics Letters, Vol. 88, Issue 22
  • DOI: 10.1063/1.2206099

Super Plastic Bulk Metallic Glasses at Room Temperature
journal, March 2007


Matching Glass-Forming Ability with the Density of the Amorphous Phase
journal, December 2008


New horizons for glass formation and stability
journal, May 2015


Atomic packing and short-to-medium-range order in metallic glasses
journal, January 2006

  • Sheng, H. W.; Luo, W. K.; Alamgir, F. M.
  • Nature, Vol. 439, Issue 7075
  • DOI: 10.1038/nature04421

Origin of Pressure-Induced Polyamorphism in Ce 75 Al 25 Metallic Glass
journal, March 2010


Direct observation of local atomic order in a metallic glass
journal, November 2010

  • Hirata, Akihiko; Guan, Pengfei; Fujita, Takeshi
  • Nature Materials, Vol. 10, Issue 1
  • DOI: 10.1038/nmat2897

Measuring strain distributions in amorphous materials
journal, December 2004

  • Poulsen, Henning F.; Wert, John A.; Neuefeind, Jörg
  • Nature Materials, Vol. 4, Issue 1
  • DOI: 10.1038/nmat1266

Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R 1 fluorescence pressure gauge from 0.06 to 1 Mbar
journal, June 1978

  • Mao, H. K.; Bell, P. M.; Shaner, J. W.
  • Journal of Applied Physics, Vol. 49, Issue 6
  • DOI: 10.1063/1.325277

A thermodynamic connection to the fragility of glass-forming liquids
journal, April 2001

  • Martinez, L. -M.; Angell, C. A.
  • Nature, Vol. 410, Issue 6829
  • DOI: 10.1038/35070517

Scaling Behavior and Cluster Fractal Dimension Determined by Light Scattering from Aggregating Proteins
journal, October 1984


Structural Aspects of Metallic Glasses
journal, August 2007

  • Miracle, Daniel B.; Egami, Takeshi; Flores, Katharine M.
  • MRS Bulletin, Vol. 32, Issue 8
  • DOI: 10.1557/mrs2007.124

Bulk Metallic Glasses: At the Cutting Edge of Metals Research
journal, August 2007


Metallic Glasses
journal, March 1995


Roles of minor additions in formation and properties of bulk metallic glasses
journal, May 2007


Anomalous compression behavior in lanthanum/cerium-based metallic glass under high pressure
journal, August 2007

  • Zeng, Q. S.; Li, Y. C.; Feng, C. M.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 34
  • DOI: 10.1073/pnas.0705999104

Fractal atomic-level percolation in metallic glasses
journal, September 2015


Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength
journal, August 2009


Atomic-level structure and structure–property relationship in metallic glasses
journal, May 2011


Power-law scaling and fractal nature of medium-range order in metallic glasses
journal, December 2008

  • Ma, D.; Stoica, A. D.; Wang, X. -L.
  • Nature Materials, Vol. 8, Issue 1
  • DOI: 10.1038/nmat2340

Universal Fractional Noncubic Power Law for Density of Metallic Glasses
journal, May 2014


Formation of Glasses from Liquids and Biopolymers
journal, March 1995


Excess free volume in metallic glasses measured by X-ray diffraction
journal, April 2005


Pressure tunes atomic packing in metallic glass
journal, April 2006

  • Sheng, H. W.; Ma, E.; Liu, H. Z.
  • Applied Physics Letters, Vol. 88, Issue 17
  • DOI: 10.1063/1.2197315