DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of the critical micelle concentration in simulations of surfactant systems

Abstract

Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from NVT simulations. Excellentmore » agreement in cmc and other micellar properties between NVT and NVT simulations of different system sizes is observed. In conclusion, the methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit).« less

Authors:
 [1]; ORCiD logo [1]
  1. Princeton Univ., Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1469187
Alternate Identifier(s):
OSTI ID: 1236409
Grant/Contract Number:  
SC0002128
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 4; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Santos, Andrew P., and Panagiotopoulos, Athanassios Z. Determination of the critical micelle concentration in simulations of surfactant systems. United States: N. p., 2016. Web. doi:10.1063/1.4940687.
Santos, Andrew P., & Panagiotopoulos, Athanassios Z. Determination of the critical micelle concentration in simulations of surfactant systems. United States. https://doi.org/10.1063/1.4940687
Santos, Andrew P., and Panagiotopoulos, Athanassios Z. Thu . "Determination of the critical micelle concentration in simulations of surfactant systems". United States. https://doi.org/10.1063/1.4940687. https://www.osti.gov/servlets/purl/1469187.
@article{osti_1469187,
title = {Determination of the critical micelle concentration in simulations of surfactant systems},
author = {Santos, Andrew P. and Panagiotopoulos, Athanassios Z.},
abstractNote = {Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in both the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from NVT simulations. Excellent agreement in cmc and other micellar properties between NVT and NVT simulations of different system sizes is observed. In conclusion, the methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit).},
doi = {10.1063/1.4940687},
journal = {Journal of Chemical Physics},
number = 4,
volume = 144,
place = {United States},
year = {Thu Jan 28 00:00:00 EST 2016},
month = {Thu Jan 28 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transition in three-dimensional micellar systems
journal, March 2000

  • Girardi, M.; Figueiredo, W.
  • The Journal of Chemical Physics, Vol. 112, Issue 10
  • DOI: 10.1063/1.481037

Critical micelle concentration and the size distribution of surfactant aggregates
journal, October 1980

  • Ben-Naim, A.; Stillinger, F. H.
  • The Journal of Physical Chemistry, Vol. 84, Issue 22
  • DOI: 10.1021/j100459a008

The Mass-Action-Law Theory of Micellization Revisited
journal, November 2014


Problems Associated with the Treatment of Conductivity−Concentration Data in Surfactant Solutions:  Simulations and Experiments
journal, August 2002

  • Carpena, P.; Aguiar, J.; Bernaola-Galván, P.
  • Langmuir, Vol. 18, Issue 16
  • DOI: 10.1021/la025770y

Critical micelle concentration. Transition point for micellar size distribution
journal, November 1975

  • Ruckenstein, E.; Nagarajan, R.
  • The Journal of Physical Chemistry, Vol. 79, Issue 24
  • DOI: 10.1021/j100591a010

Monte Carlo Simulations for Micellar Encapsulation
journal, June 1997

  • Talsania, Sameer K.; Wang, Yongmei; Rajagopalan, Raj
  • Journal of Colloid and Interface Science, Vol. 190, Issue 1
  • DOI: 10.1006/jcis.1997.4868

Implicit-Solvent Models for Micellization: Nonionic Surfactants and Temperature-Dependent Properties
journal, February 2011

  • Jusufi, Arben; Sanders, Samantha; Klein, Michael L.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 5
  • DOI: 10.1021/jp108107f

Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics
journal, October 2011

  • Levine, Benjamin G.; LeBard, David N.; DeVane, Russell
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 12
  • DOI: 10.1021/ct2005193

Critical micelle concentration in three-dimensional lattice models of amphiphiles
journal, September 2001


Error estimates on averages of correlated data
journal, July 1989

  • Flyvbjerg, H.; Petersen, H. G.
  • The Journal of Chemical Physics, Vol. 91, Issue 1
  • DOI: 10.1063/1.457480

Carbon-13 NMR of micellar solutions. Micellar aggregation number from the concentration dependence of the carbon-13 chemical shifts
journal, November 1979

  • Persson, Bert Ove.; Drakenberg, Torbjoern.; Lindman, Bjoern.
  • The Journal of Physical Chemistry, Vol. 83, Issue 23
  • DOI: 10.1021/j100486a015

A Definition of the Degree of Ionization of a Micelle Based on Its Aggregation Number
journal, July 2001

  • Bales, Barney L.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 29
  • DOI: 10.1021/jp004576m

Calculations of Critical Micelle Concentration by Dissipative Particle Dynamics Simulations: The Role of Chain Rigidity
journal, July 2013

  • Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 35
  • DOI: 10.1021/jp4042028

Osmotic pressure in colloid science: clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers
journal, August 2007

  • Carrière, David; Page, Miles; Dubois, Monique
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 303, Issue 1-2
  • DOI: 10.1016/j.colsurfa.2007.02.050

Ternary oil—water—amphiphile systems: self-assembly and phase equilibria
journal, July 2002

  • Kim, Seung-Yeon; Panagiotopoulos, Athanassios Z.; Floriano, M. Antonio
  • Molecular Physics, Vol. 100, Issue 14
  • DOI: 10.1080/00268970210125331

Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations
journal, February 2013

  • Vishnyakov, Aleksey; Lee, Ming-Tsung; Neimark, Alexander V.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 5
  • DOI: 10.1021/jz400066k

Model Shape Transitions of Micelles: Spheres to Cylinders and Disks
journal, February 2012

  • Daful, Asfaw Gezae; Avalos, Josep Bonet; Mackie, Allan D.
  • Langmuir, Vol. 28, Issue 8
  • DOI: 10.1021/la204132c

Novel scheme to study structural and thermal properties of continuously deformable molecules
journal, March 1992

  • Frenkel, D.; Mooij, G. C. A. M.; Smit, B.
  • Journal of Physics: Condensed Matter, Vol. 4, Issue 12
  • DOI: 10.1088/0953-8984/4/12/006

Osmotic Pressure and Interparticle Interactions in Ionic Micellar Surfactant Solutions
journal, April 1998

  • Amos, D. A.; Markels, J. H.; Lynn, S.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 15
  • DOI: 10.1021/jp9805407

Computational study of trimer self-assembly and fluid phase behavior
journal, April 2015

  • Hatch, Harold W.; Mittal, Jeetain; Shen, Vincent K.
  • The Journal of Chemical Physics, Vol. 142, Issue 16
  • DOI: 10.1063/1.4918557

New Monte Carlo technique for studying phase transitions
journal, December 1988


Monte Carlo Simulations of Micellization in Model Ionic Surfactants:  Application to Sodium Dodecyl Sulfate
journal, April 2006

  • Cheong, Daniel W.; Panagiotopoulos, Athanassios Z.
  • Langmuir, Vol. 22, Issue 9
  • DOI: 10.1021/la053511d

Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions
journal, October 2014

  • Jusufi, Arben; Panagiotopoulos, Athanassios Z.
  • Langmuir, Vol. 31, Issue 11
  • DOI: 10.1021/la502227v

Growth of Sodium Dodecyl Sulfate Micelles with Detergent Concentration
journal, November 1995

  • Quina, Frank H.; Nassar, Patricia M.; Bonilha, Joao B. S.
  • The Journal of Physical Chemistry, Vol. 99, Issue 46
  • DOI: 10.1021/j100046a031

Micellization and Phase Separation of Diblock and Triblock Model Surfactants
journal, April 2002

  • Panagiotopoulos, Athanassios Z.; Floriano, M. Antonio; Kumar, Sanat K.
  • Langmuir, Vol. 18, Issue 7
  • DOI: 10.1021/la0156513

Phase behavior and structure formation in linear multiblock copolymer solutions by Monte Carlo simulation
journal, April 2008

  • Gindy, Marian E.; Prud’homme, Robert K.; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 128, Issue 16
  • DOI: 10.1063/1.2905231

Thermodynamics of Micelle Formation as a Function of Temperature: A High Sensitivity Titration Calorimetry Study
journal, July 1995

  • Paula, Stefan; Sues, Willy; Tuchtenhagen, Juergen
  • The Journal of Physical Chemistry, Vol. 99, Issue 30
  • DOI: 10.1021/j100030a019

Adsorption of surface active agents in a non-aqueous solvent
journal, January 1975

  • Couper, A.; Gladden, G. P.; Ingram, B. T.
  • Faraday Discussions of the Chemical Society, Vol. 59
  • DOI: 10.1039/dc9755900063

Implicit Solvent Simulations of DPC Micelle Formation
journal, August 2005

  • Lazaridis, Themis; Mallik, Buddhadeb; Chen, Yong
  • The Journal of Physical Chemistry B, Vol. 109, Issue 31
  • DOI: 10.1021/jp0516801

A model on the temperature dependence of critical micelle concentration
journal, March 2004

  • Kim, Hong-Un; Lim, Kyung-Hee
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 235, Issue 1-3
  • DOI: 10.1016/j.colsurfa.2003.12.019

Energy and size fluctuations of amphiphilic aggregates in a lattice model
journal, June 2000


Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity
journal, January 2005

  • Thévenot, Caroline; Grassl, Bruno; Bastiat, Guillaume
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 252, Issue 2-3
  • DOI: 10.1016/j.colsurfa.2004.10.062

Phase Separation and Liquid Crystal Self-Assembly in Surfactant−Inorganic−Solvent Systems
journal, March 2003

  • Siperstein, Flor R.; Gubbins, Keith E.
  • Langmuir, Vol. 19, Issue 6
  • DOI: 10.1021/la026410d

Communication: Effect of solvophobic block length on critical micelle concentration in model surfactant systems
journal, July 2014

  • Nikoubashman, Arash; Panagiotopoulos, Athanassios Z.
  • The Journal of Chemical Physics, Vol. 141, Issue 4
  • DOI: 10.1063/1.4890981

Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates
journal, February 2012

  • Sanders, Samantha A.; Sammalkorpi, Maria; Panagiotopoulos, Athanassios Z.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 8
  • DOI: 10.1021/jp209207p

Micelle Formation and the Hydrophobic Effect
journal, May 2004

  • Maibaum, Lutz; Dinner, Aaron R.; Chandler, David
  • The Journal of Physical Chemistry B, Vol. 108, Issue 21
  • DOI: 10.1021/jp037487t

Monte Carlo simulation of a lattice model for micelle formation
journal, July 1994

  • Bernardes, Américo T.; Henriques, Vera B.; Bisch, Paulo M.
  • The Journal of Chemical Physics, Vol. 101, Issue 1
  • DOI: 10.1063/1.468120

Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants
journal, April 1976

  • Aniansson, E. A. G.; Wall, S. N.; Almgren, M.
  • The Journal of Physical Chemistry, Vol. 80, Issue 9
  • DOI: 10.1021/j100550a001

Monte Carlo simulation of model amphiphile‐oil–water systems
journal, September 1985

  • Larson, R. G.; Scriven, L. E.; Davis, H. T.
  • The Journal of Chemical Physics, Vol. 83, Issue 5
  • DOI: 10.1063/1.449286

Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations
journal, August 2015

  • Mao, Runfang; Lee, Ming-Tsung; Vishnyakov, Aleksey
  • The Journal of Physical Chemistry B, Vol. 119, Issue 35
  • DOI: 10.1021/acs.jpcb.5b05630

Temperature-induced transition to a nonmicellar state
journal, January 1999

  • de Moraes, J. N. B.; Figueiredo, W.
  • The Journal of Chemical Physics, Vol. 110, Issue 4
  • DOI: 10.1063/1.477879

Self-assembly of surfactants in a supercritical solvent from lattice Monte Carlo simulations
journal, January 2002

  • Lı́sal, Martin; Hall, Carol K.; Gubbins, Keith E.
  • The Journal of Chemical Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.1428347

Sphere-to-rod transitions of micelles in model nonionic surfactant solutions
journal, February 2003

  • Al-Anber, Zaid A.; Bonet i. Avalos, Josep; Floriano, M. Antonio
  • The Journal of Chemical Physics, Vol. 118, Issue 8
  • DOI: 10.1063/1.1539048

Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm
journal, October 1976


Micellization in Model Surfactant Systems
journal, April 1999

  • Floriano, M. Antonio; Caponetti, Eugenio; Panagiotopoulos, Athanassios Z.
  • Langmuir, Vol. 15, Issue 9
  • DOI: 10.1021/la9810206

Modeling of Nonionic Micelles
journal, October 1995


Membrane osmometry of aqueous micellar solutions of pure nonionic and ionic surfactants
journal, September 1970

  • Attwood, D.; Elworthy, Peter H.; Kayne, S. B.
  • The Journal of Physical Chemistry, Vol. 74, Issue 19
  • DOI: 10.1021/j100713a016

Implicit Solvent Models for Micellization of Ionic Surfactants
journal, November 2008

  • Jusufi, Arben; Hynninen, Antti-Pekka; Panagiotopoulos, Athanassios Z.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 44
  • DOI: 10.1021/jp8043225

Temperature Dependence of Equilibrium and Transport Properties of Decyldimethylbenzylammonium Chloride in Aqueous Solutions
journal, May 2001

  • González-Pérez, A.; Del Castillo, J. L.; Czapkiewicz, J.
  • Journal of Chemical & Engineering Data, Vol. 46, Issue 3
  • DOI: 10.1021/je000114q

Anomalous Temperature Dependence of Surfactant Self-Assembly from Aqueous Solution
journal, April 2004


A Monte Carlo simulation of the micellar phase of an amphiphile and solvent mixture
journal, February 1996


Monte Carlo simulation of microstructural transitions in surfactant systems
journal, June 1992

  • Larson, R. G.
  • The Journal of Chemical Physics, Vol. 96, Issue 11
  • DOI: 10.1063/1.462343

Monte Carlo Calculation of the Average Extension of Molecular Chains
journal, February 1955

  • Rosenbluth, Marshall N.; Rosenbluth, Arianna W.
  • The Journal of Chemical Physics, Vol. 23, Issue 2
  • DOI: 10.1063/1.1741967

Ion Specificity and Micellization of Ionic Surfactants: A Monte Carlo Study
journal, April 2014

  • dos Santos, Alexandre P.; Figueiredo, Wagner; Levin, Yan
  • Langmuir, Vol. 30, Issue 16
  • DOI: 10.1021/la500710t

Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units
journal, January 2012

  • LeBard, David N.; Levine, Benjamin G.; Mertmann, Philipp
  • Soft Matter, Vol. 8, Issue 8
  • DOI: 10.1039/C1SM06787G

Surfactant Concentration Effects on Micellar Properties
journal, January 2012

  • Jusufi, Arben; LeBard, David N.; Levine, Benjamin G.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 3
  • DOI: 10.1021/jp2102989

Reptation of a Polymer Chain in the Presence of Fixed Obstacles
journal, July 1971

  • de Gennes, P. G.
  • The Journal of Chemical Physics, Vol. 55, Issue 2
  • DOI: 10.1063/1.1675789

Aggregation Behavior of a Lattice Model for Amphiphiles
journal, September 1997

  • Mackie, Allan D.; Panagiotopoulos, Athanassios Z.; Szleifer, Igal
  • Langmuir, Vol. 13, Issue 19
  • DOI: 10.1021/la961090h

Micellar Aggregation Numbers - A Fluorescence Study
journal, January 1998

  • van Stam, Jan; Depaemelaere, Sigrid; De Schryver, Frans C.
  • Journal of Chemical Education, Vol. 75, Issue 1
  • DOI: 10.1021/ed075p93

Surfactant association into micelles. An electrostatic approach
journal, November 1980

  • Gunnarsson, Gudmundur; Joensson, Bengt; Wennerstroem, Haakan
  • The Journal of Physical Chemistry, Vol. 84, Issue 23
  • DOI: 10.1021/j100460a029

Works referencing / citing this record:

Review of recent studies on interactions between polymers and nanotubes using molecular dynamic simulation
journal, September 2016

  • Fatemi, S. Mahmood; Foroutan, Masumeh
  • Journal of the Iranian Chemical Society, Vol. 14, Issue 2
  • DOI: 10.1007/s13738-016-0976-x

Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery
journal, August 2017

  • Terrón-Mejía, Ketzasmin A.; López-Rendón, Roberto; Goicochea, Armando Gama
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/s41598-017-09735-8

Self-assembly of spiral patterns in confined systems with competing interactions
journal, January 2019

  • Pȩkalski, J.; Bildanau, E.; Ciach, A.
  • Soft Matter, Vol. 15, Issue 38
  • DOI: 10.1039/c9sm01179j

Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods
journal, February 2017

  • Mahynski, Nathan A.; Blanco, Marco A.; Errington, Jeffrey R.
  • The Journal of Chemical Physics, Vol. 146, Issue 7
  • DOI: 10.1063/1.4975331

Following the nucleation pathway from disordered liquid to gyroid mesophase
journal, April 2019

  • Marriott, Maile; Lupi, Laura; Kumar, Abhinaw
  • The Journal of Chemical Physics, Vol. 150, Issue 16
  • DOI: 10.1063/1.5081850

Non-equilibrium effects of micelle formation as studied by a minimum particle-based model
journal, May 2019

  • Raschke, Simon; Heuer, Andreas
  • The Journal of Chemical Physics, Vol. 150, Issue 20
  • DOI: 10.1063/1.5086618

Simulation of diblock copolymer surfactants. I. Micelle free energies
journal, July 2019


Self-Assembly of Spiral Patterns in Confined System with Competing Interactions
text, January 2019


Aggregation Behavior of Medium Chain Fatty Acids Studied by Coarse-Grained Molecular Dynamics Simulation
journal, January 2019

  • Hossain, Md Shakhawath; Berg, Staffan; Bergström, Christel A. S.
  • AAPS PharmSciTech, Vol. 20, Issue 2
  • DOI: 10.1208/s12249-018-1289-4

Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery
preprint, January 2017