DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced conversion efficiency in wide-bandgap GaNP solar cells

Abstract

In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1236231
Alternate Identifier(s):
OSTI ID: 1420525
Report Number(s):
SAND-2015-6907J
Journal ID: ISSN 0003-6951; APPLAB; 599097
Grant/Contract Number:  
AC04-94AL85000; AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 107; Journal Issue: 15; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; III-V semiconductors; band gap; interface structure; diffusion; antireflective coatings

Citation Formats

Sukrittanon, Supanee, Liu, Ren, Ro, Yun Goo, Pan, Janet L., Jungjohann, Katherine Leigh, Tu, Charles W., and Dayeh, Shadi A. Enhanced conversion efficiency in wide-bandgap GaNP solar cells. United States: N. p., 2015. Web. doi:10.1063/1.4933317.
Sukrittanon, Supanee, Liu, Ren, Ro, Yun Goo, Pan, Janet L., Jungjohann, Katherine Leigh, Tu, Charles W., & Dayeh, Shadi A. Enhanced conversion efficiency in wide-bandgap GaNP solar cells. United States. https://doi.org/10.1063/1.4933317
Sukrittanon, Supanee, Liu, Ren, Ro, Yun Goo, Pan, Janet L., Jungjohann, Katherine Leigh, Tu, Charles W., and Dayeh, Shadi A. Mon . "Enhanced conversion efficiency in wide-bandgap GaNP solar cells". United States. https://doi.org/10.1063/1.4933317. https://www.osti.gov/servlets/purl/1236231.
@article{osti_1236231,
title = {Enhanced conversion efficiency in wide-bandgap GaNP solar cells},
author = {Sukrittanon, Supanee and Liu, Ren and Ro, Yun Goo and Pan, Janet L. and Jungjohann, Katherine Leigh and Tu, Charles W. and Dayeh, Shadi A.},
abstractNote = {In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.},
doi = {10.1063/1.4933317},
journal = {Applied Physics Letters},
number = 15,
volume = 107,
place = {United States},
year = {Mon Oct 12 00:00:00 EDT 2015},
month = {Mon Oct 12 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Growth and characterization of GaP/GaNP core/shell nanowires
journal, May 2013

  • Sukrittanon, Supanee; Tu, Charles W.
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 31, Issue 3
  • DOI: 10.1116/1.4793476

Formation of grown-in defects in molecular beam epitaxial Ga(In)NP: Effects of growth conditions and postgrowth treatments
journal, March 2008

  • Dagnelund, D.; Buyanova, I. A.; Wang, X. J.
  • Journal of Applied Physics, Vol. 103, Issue 6
  • DOI: 10.1063/1.2895379

Effects of rapid thermal annealing on optical quality of GaNP alloys
journal, October 2004

  • Izadifard, M.; Yonezu, H.; Wakahara, A.
  • IEE Proceedings - Optoelectronics, Vol. 151, Issue 5
  • DOI: 10.1049/ip-opt:20040872

Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy
journal, February 2015

  • Vaisman, M.; Tomasulo, S.; Masuda, T.
  • Applied Physics Letters, Vol. 106, Issue 6
  • DOI: 10.1063/1.4908181

Simulation assisted design of a gallium phosphide n–p photovoltaic junction
journal, May 2010

  • Allen, Charles R.; Jeon, Jong-Hyeok; Woodall, Jerry M.
  • Solar Energy Materials and Solar Cells, Vol. 94, Issue 5
  • DOI: 10.1016/j.solmat.2010.01.009

Nucleation-related defect-free GaP/Si(100) heteroepitaxy via metal-organic chemical vapor deposition
journal, April 2013

  • Grassman, T. J.; Carlin, J. A.; Galiana, B.
  • Applied Physics Letters, Vol. 102, Issue 14
  • DOI: 10.1063/1.4801498

Control and elimination of nucleation-related defects in GaP/Si(001) heteroepitaxy
journal, June 2009

  • Grassman, T. J.; Brenner, M. R.; Rajagopalan, S.
  • Applied Physics Letters, Vol. 94, Issue 23
  • DOI: 10.1063/1.3154548

Growth of GaN x As y P 1−x−y alloys on GaP(100) by gas-source molecular beam epitaxy
journal, March 2012

  • Sinha, Sunil K.; Tu, Charles Wuching
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 30, Issue 2
  • DOI: 10.1116/1.3680603

Metamorphic 2.1-2.2 eV InGaP solar cells on GaP substrates
journal, April 2014

  • Tomasulo, S.; Nay Yaung, K.; Faucher, J.
  • Applied Physics Letters, Vol. 104, Issue 17
  • DOI: 10.1063/1.4874615

Comparison of GaAsP solar cells on GaP and GaP/Si
journal, August 2013

  • Lang, Jordan R.; Faucher, Joseph; Tomasulo, Stephanie
  • Applied Physics Letters, Vol. 103, Issue 9
  • DOI: 10.1063/1.4819456

Effects of nitrogen on the band structure of GaNxP1−x alloys
journal, March 2000

  • Xin, H. P.; Tu, C. W.; Zhang, Yong
  • Applied Physics Letters, Vol. 76, Issue 10
  • DOI: 10.1063/1.126005

Time-resolved studies of photoluminescence in GaNxP1−x alloys: Evidence for indirect-direct band gap crossover
journal, July 2002

  • Buyanova, I. A.; Pozina, G.; Bergman, J. P.
  • Applied Physics Letters, Vol. 81, Issue 1
  • DOI: 10.1063/1.1491286

Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy
journal, January 2012

  • Sukrittanon, S.; Tu, C. W.
  • Applied Physics Letters, Vol. 100, Issue 5
  • DOI: 10.1063/1.3681172

GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell
conference, April 2015

  • Da Silva, M.; Almosni, S.; Cornet, C.
  • SPIE OPTO, SPIE Proceedings
  • DOI: 10.1117/12.2081376

Band anticrossing in highly mismatched III V semiconductor alloys
journal, July 2002


Improved Optoelectronic Properties of Rapid Thermally Annealed Dilute Nitride GaInNAs Photodetectors
journal, September 2012


N incorporation in GaP and band gap bowing of GaN x P 1− x
journal, December 1996

  • Bi, W. G.; Tu, C. W.
  • Applied Physics Letters, Vol. 69, Issue 24
  • DOI: 10.1063/1.117197

The Absorption Spectrum of Gallium Phosphide between 2 and 3 eV
journal, January 1966


Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition
journal, June 1995

  • Deshpande, Sadanand V.; Gulari, Erdogan; Brown, Steven W.
  • Journal of Applied Physics, Vol. 77, Issue 12
  • DOI: 10.1063/1.359062

Results of a gallium phosphide photovoltaic junction with an AR coating under concentration of natural sunlight
journal, September 2011


Nature of the fundamental band gap in GaNxP1−x alloys
journal, May 2000

  • Shan, W.; Walukiewicz, W.; Yu, K. M.
  • Applied Physics Letters, Vol. 76, Issue 22
  • DOI: 10.1063/1.126597

GaAsP solar cells on GaP substrates by molecular beam epitaxy
journal, July 2012

  • Tomasulo, S.; Nay Yaung, K.; Simon, J.
  • Applied Physics Letters, Vol. 101, Issue 3
  • DOI: 10.1063/1.4738373

Improving GaP Solar Cell Performance by Passivating the Surface Using AlxGa1-xP Epi-Layer
journal, May 2013

  • Lu, Xuesong; Hao, Ruiying; Diaz, Martin
  • IEEE Journal of the Electron Devices Society, Vol. 1, Issue 5
  • DOI: 10.1109/JEDS.2013.2266410

Wide Band Gap Gallium Phosphide Solar Cells
journal, April 2012


Temperature behavior of the GaNP band gap energy
journal, March 2003


Theory of electronic structure evolution in GaAsN and GaPN alloys
journal, August 2001


MOCVD-Grown GaP/Si Subcells for Integrated III–V/Si Multijunction Photovoltaics
journal, May 2014


Intrinsic Doping: A New Approach for n -Type Modulation Doping in InP-Based Heterostructures
journal, September 1996


Works referencing / citing this record:

Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current
journal, August 2016

  • Sukrittanon, Supanee; Liu, Ren; Breeden, Michael C.
  • Journal of Applied Physics, Vol. 120, Issue 5
  • DOI: 10.1063/1.4959821

Effect of rapid thermal annealing on the electrical properties of dilute GaAsPN based diodes
journal, September 2019

  • Alburaih, H. A.; Albalawi, H.; Henini, M.
  • Semiconductor Science and Technology, Vol. 34, Issue 10
  • DOI: 10.1088/1361-6641/ab3671