skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 4, 2017

Title: A tamper-indicating quantum seal

Technical means for identifying when tampering occurs is a critical part of many containment and surveillance technologies. Conventional fiber optic seals provide methods for monitoring enclosed inventories, but they are vulnerable to spoofing attacks based on classical physics. We address these vulnerabilities with the development of a quantum seal that offers the ability to detect the intercept-resend attack using quantum integrity verification. Our approach represents an application of entanglement to provide guarantees in the authenticity of the seal state by verifying it was transmitted coherently. We implement these ideas using polarization-entangled photon pairs that are verified after passing through a fiber-optic channel testbed. Using binary detection theory, we find the probability of detecting inauthentic signals is greater than 0.9999 with a false alarm chance of 10–9 for a 10 second sampling interval. In addition, we show how the Hong-Ou-Mandel effect concurrently provides a tight bound on redirection attack, in which tampering modifies the shape of the seal. Our measurements limit the tolerable path length change to sub-millimeter disturbances. As a result, these tamper-indicating features of the quantum seal offer unprecedented security for unattended monitoring systems.
Authors:
 [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1235831
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Physical Review Applied
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2331-7019
Publisher:
American Physical Society
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS quantum information; quantum optics; signal processing