skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 8, 2017

Title: Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2

The magnetic structure and phase diagram of the layered ferromagnetic compound Fe3GeTe2 have been investigated by a combination of synthesis, x-ray and neutron diffraction, high-resolution microscopy, and magnetization measurements. Single crystals were synthesized by self-flux reactions, and single-crystal neutron diffraction finds ferromagnetic order with moments of 1.11(5)μB/Fe aligned along the c axis at 4 K. These flux-grown crystals have a lower Curie temperature Tc ≈ 150 K than crystals previously grown by vapor transport (Tc = 220 K). The difference is a reduced Fe content in the flux-grown crystals, as illustrated by the behavior observed in a series of polycrystalline samples. As Fe content decreases, so do the Curie temperature, magnetic anisotropy, and net magnetization. Furthermore, Hall-effect and thermoelectric measurements on flux-grown crystals suggest that multiple carrier types contribute to electrical transport in Fe3–xGeTe2 and structurally similar Ni3–xGeTe2.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1235824
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 93; Journal Issue: 1; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE