skip to main content

DOE PAGESDOE PAGES

Title: Realizing high-quality ultralarge momentum states and ultrafast topological transitions using semiconductor hyperbolic metamaterials

We employ both the effective medium approximation (EMA) and Bloch theory to compare the dispersion properties of semiconductor hyperbolic metamaterials (SHMs) at mid-infrared frequencies and metallic hyperbolic metamaterials (MHMs) at visible frequencies. This analysis reveals the conditions under which the EMA can be safely applied for both MHMs and SHMs. We find that the combination of precise nanoscale layering and the longer infrared operating wavelengths puts the SHMs well within the effective medium limit and, in contrast to MHMs, allows for the attainment of very high photon momentum states. Additionally, SHMs allow for new phenomena such as ultrafast creation of the hyperbolic manifold through optical pumping. Furthermore, we examine the possibility of achieving ultrafast topological transitions through optical pumping which can photo-dope appropriately designed quantum wells on the femtosecond time scale.
Authors:
 [1] ;  [1] ;  [1] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
1235307
Report Number(s):
SAND--2015-1917J
Journal ID: ISSN 0740-3224; 579336
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Journal of the Optical Society of America. Part B, Optical Physics
Additional Journal Information:
Journal Volume: 32; Journal Issue: 9; Journal ID: ISSN 0740-3224
Publisher:
Optical Society of America (OSA)
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY