skip to main content

DOE PAGESDOE PAGES

Title: Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayer material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.
Authors:
 [1] ;  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Univ. of New Mexico, Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
1235302
Report Number(s):
SAND--2015-1003J
Journal ID: ISSN 0884-2914; 566971
Grant/Contract Number:
AC04-94AL85000
Type:
Accepted Manuscript
Journal Name:
Journal of Materials Research
Additional Journal Information:
Journal Volume: 30; Journal Issue: 15; Journal ID: ISSN 0884-2914
Publisher:
Materials Research Society
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE nanoindentation; elastic properties; film