DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ligand structure and mechanical properties of single-nanoparticle thick membranes

Abstract

We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH3)more » alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1235281
Alternate Identifier(s):
OSTI ID: 1184884
Report Number(s):
SAND-2015-1157J
Journal ID: ISSN 1539-3755; 567065
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: 06; Journal ID: ISSN 1539-3755
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Salerno, Kenneth Michael, Bolintineanu, Dan S., Lane, J. Matthew D., and Grest, Gary S. Ligand structure and mechanical properties of single-nanoparticle thick membranes. United States: N. p., 2015. Web. doi:10.1103/PhysRevE.91.062403.
Salerno, Kenneth Michael, Bolintineanu, Dan S., Lane, J. Matthew D., & Grest, Gary S. Ligand structure and mechanical properties of single-nanoparticle thick membranes. United States. https://doi.org/10.1103/PhysRevE.91.062403
Salerno, Kenneth Michael, Bolintineanu, Dan S., Lane, J. Matthew D., and Grest, Gary S. Tue . "Ligand structure and mechanical properties of single-nanoparticle thick membranes". United States. https://doi.org/10.1103/PhysRevE.91.062403. https://www.osti.gov/servlets/purl/1235281.
@article{osti_1235281,
title = {Ligand structure and mechanical properties of single-nanoparticle thick membranes},
author = {Salerno, Kenneth Michael and Bolintineanu, Dan S. and Lane, J. Matthew D. and Grest, Gary S.},
abstractNote = {We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.},
doi = {10.1103/PhysRevE.91.062403},
journal = {Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics},
number = 06,
volume = 91,
place = {United States},
year = {Tue Jun 16 00:00:00 EDT 2015},
month = {Tue Jun 16 00:00:00 EDT 2015}
}

Journal Article:

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mechanical Properties of Face-Centered Cubic Supercrystals of Nanocrystals
journal, July 2010

  • Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena
  • Nano Letters, Vol. 10, Issue 7
  • DOI: 10.1021/nl1001313

Fabrication and Mechanical Properties of Large-Scale Freestanding Nanoparticle Membranes
journal, June 2010


Pressure-Driven Assembly of Spherical Nanoparticles and Formation of 1D-Nanostructure Arrays
journal, July 2010

  • Wu, Huimeng; Bai, Feng; Sun, Zaicheng
  • Angewandte Chemie International Edition, Vol. 49, Issue 45, p. 8431-8434
  • DOI: 10.1002/anie.201001581

Freely suspended nanocomposite membranes as highly sensitive sensors
journal, September 2004

  • Jiang, Chaoyang; Markutsya, Sergiy; Pikus, Yuri
  • Nature Materials, Vol. 3, Issue 10
  • DOI: 10.1038/nmat1212

Charge- and size-based separation of macromolecules using ultrathin silicon membranes
journal, February 2007

  • Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.
  • Nature, Vol. 445, Issue 7129
  • DOI: 10.1038/nature05532

Ion transport controlled by nanoparticle-functionalized membranes
journal, December 2014

  • Barry, Edward; McBride, Sean P.; Jaeger, Heinrich M.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6847

Diffusion and Filtration Properties of Self-Assembled Gold Nanocrystal Membranes
journal, June 2011

  • He, Jinbo; Lin, Xiao-Min; Chan, Henry
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200841a

Kinetically driven self assembly of highly ordered nanoparticle monolayers
journal, March 2006

  • Bigioni, Terry P.; Lin, Xiao-Min; Nguyen, Toan T.
  • Nature Materials, Vol. 5, Issue 4
  • DOI: 10.1038/nmat1611

Free-standing nanoparticle superlattice sheets controlled by DNA
journal, May 2009

  • Cheng, Wenlong; Campolongo, Michael J.; Cha, Judy J.
  • Nature Materials, Vol. 8, Issue 6
  • DOI: 10.1038/nmat2440

Elastic membranes of close-packed nanoparticle arrays
journal, July 2007

  • Mueggenburg, Klara E.; Lin, Xiao-Min; Goldsmith, Rodney H.
  • Nature Materials, Vol. 6, Issue 9
  • DOI: 10.1038/nmat1965

Critical island size, scaling, and ordering in colloidal nanoparticle self-assembly
journal, September 2014


Freely Suspended Layer-by-Layer Nanomembranes: Testing Micromechanical Properties
journal, May 2005

  • Markutsya, S.; Jiang, C.; Pikus, Y.
  • Advanced Functional Materials, Vol. 15, Issue 5
  • DOI: 10.1002/adfm.200400149

High Strength, Molecularly Thin Nanoparticle Membranes
journal, December 2014


Explicit all-atom modeling of realistically sized ligand-capped nanocrystals
journal, March 2012

  • Kaushik, Ananth P.; Clancy, Paulette
  • The Journal of Chemical Physics, Vol. 136, Issue 11
  • DOI: 10.1063/1.3689973

Structural and Dynamic Properties of Water near Monolayer-Protected Gold Clusters with Various Alkanethiol Tail Groups
journal, April 2010

  • Yang, An-Cheng; Weng, Cheng-I
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp910101t

Behavior of water molecules near monolayer-protected clusters with different terminal segments of ligand
journal, July 2011

  • Yang, An-Cheng; Weng, Cheng-I; Chen, Tei-Chen
  • The Journal of Chemical Physics, Vol. 135, Issue 3
  • DOI: 10.1063/1.3602721

Fully Atomistic Simulations of the Response of Silica Nanoparticle Coatings to Alkane Solvents
journal, December 2012

  • Peters, Brandon L.; Lane, J. Matthew D.; Ismail, Ahmed E.
  • Langmuir, Vol. 28, Issue 50
  • DOI: 10.1021/la3023166

Assembly of responsive-shape coated nanoparticles at water surfaces
journal, January 2014


Effects of Functional Groups and Ionization on the Structure of Alkanethiol-Coated Gold Nanoparticles
journal, September 2014

  • Bolintineanu, Dan S.; Lane, J. Matthew D.; Grest, Gary S.
  • Langmuir, Vol. 30, Issue 37
  • DOI: 10.1021/la502795z

Molecular Dynamics Simulation Study of Self-Assembled Monolayers of Alkanethiol Surfactants on Spherical Gold Nanoparticles
journal, November 2007

  • Ghorai, Pradip Kr.; Glotzer, Sharon C.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 43
  • DOI: 10.1021/jp0746289

Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites
journal, August 1998

  • Luedtke, W. D.; Landman, Uzi
  • The Journal of Physical Chemistry B, Vol. 102, Issue 34
  • DOI: 10.1021/jp981745i

Wetting Properties of Passivated Metal Nanocrystals at Liquid−Vapor Interfaces: A Computer Simulation Study
journal, November 2006

  • Tay, Kafui A.; Bresme, Fernando
  • Journal of the American Chemical Society, Vol. 128, Issue 43
  • DOI: 10.1021/ja061901w

Solvation of Metal Nanoparticles in a Subcritical — Supercritical Fluid:  A Computer Simulation Study
journal, May 2004

  • Lal, Moti; Plummer, Martin; Richmond, Nicola J.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 19
  • DOI: 10.1021/jp036776e

Solvent Effects in the Adsorption of Alkyl Thiols on Gold Structures:  A Molecular Simulation Study
journal, July 2007

  • Pool, René; Schapotschnikow, Philipp; Vlugt, Thijs J. H.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 28
  • DOI: 10.1021/jp071491d

Interactions between sterically stabilized nanoparticles in supercritical fluids: A simulation study
journal, February 2007

  • Patel, N.; Egorov, S. A.
  • The Journal of Chemical Physics, Vol. 126, Issue 5
  • DOI: 10.1063/1.2434155

Understanding interactions between capped nanocrystals: Three-body and chain packing effects
journal, September 2009

  • Schapotschnikow, Philipp; Vlugt, Thijs J. H.
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3227043

Molecular Simulations of Interacting Nanocrystals
journal, September 2008

  • Schapotschnikow, Philipp; Pool, René; Vlugt, Thijs J. H.
  • Nano Letters, Vol. 8, Issue 9
  • DOI: 10.1021/nl8017862

Solvent-driven symmetry of self-assembled nanocrystal superlattices-A computational study
journal, October 2012

  • Kaushik, Ananth P.; Clancy, Paulette
  • Journal of Computational Chemistry, Vol. 34, Issue 7
  • DOI: 10.1002/jcc.23152

Orientational Ordering of Passivating Ligands on CdS Nanorods in Solution Generates Strong Rod–Rod Interactions
journal, December 2013

  • Widmer-Cooper, Asaph; Geissler, Phillip
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl403067p

Determination of Binding Energy and Solubility Parameters for Functionalized Gold Nanoparticles by Molecular Dynamics Simulation
journal, June 2011

  • Henz, Brian J.; Chung, Peter W.; Andzelm, Jan W.
  • Langmuir, Vol. 27, Issue 12
  • DOI: 10.1021/la2005024

Forces between functionalized silica nanoparticles in solution
journal, May 2009


Simulation Study of Aggregations of Monolayer-Protected Gold Nanoparticles in Solvents
journal, September 2011

  • Lin, Jia-Qi; Zhang, Hong-Wu; Chen, Zhen
  • The Journal of Physical Chemistry C, Vol. 115, Issue 39
  • DOI: 10.1021/jp204735d

Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface
journal, June 2014

  • Poddar, Nitun N.; Amar, Jacques G.
  • The Journal of Chemical Physics, Vol. 140, Issue 24
  • DOI: 10.1063/1.4884022

Structure, Dynamics, and Thermodynamics of Passivated Gold Nanocrystallites and Their Assemblies
journal, January 1996

  • Luedtke, W. D.; Landman, Uzi
  • The Journal of Physical Chemistry, Vol. 100, Issue 32
  • DOI: 10.1021/jp961721g

Supercrystals of DNA-Functionalized Gold Nanoparticles: A Million-Atom Molecular Dynamics Simulation Study
journal, August 2012

  • Ngo, Van A.; Kalia, Rajiv K.; Nakano, Aiichiro
  • The Journal of Physical Chemistry C, Vol. 116, Issue 36
  • DOI: 10.1021/jp306133v

Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys
journal, June 1986


Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm:  Core and Monolayer Properties as a Function of Core Size
journal, January 1998

  • Hostetler, Michael J.; Wingate, Julia E.; Zhong, Chuan-Jian
  • Langmuir, Vol. 14, Issue 1
  • DOI: 10.1021/la970588w

Thiol-Functionalized, 1.5-nm Gold Nanoparticles through Ligand Exchange Reactions:  Scope and Mechanism of Ligand Exchange
journal, February 2005

  • Woehrle, Gerd H.; Brown, Leif O.; Hutchison, James E.
  • Journal of the American Chemical Society, Vol. 127, Issue 7
  • DOI: 10.1021/ja0457718

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Study of the interaction between short alkanethiols from ab initio calculations
journal, January 2010

  • Canchaya, J. G. Solano; Wang, Y.; Alcamí, M.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 27
  • DOI: 10.1039/b923428d

Reversible multiple time scale molecular dynamics
journal, August 1992

  • Tuckerman, M.; Berne, B. J.; Martyna, G. J.
  • The Journal of Chemical Physics, Vol. 97, Issue 3
  • DOI: 10.1063/1.463137

Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
journal, May 2004

  • Horn, Hans W.; Swope, William C.; Pitera, Jed W.
  • The Journal of Chemical Physics, Vol. 120, Issue 20
  • DOI: 10.1063/1.1683075

A general purpose model for the condensed phases of water: TIP4P/2005
journal, December 2005

  • Abascal, J. L. F.; Vega, C.
  • The Journal of Chemical Physics, Vol. 123, Issue 23
  • DOI: 10.1063/1.2121687

Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
journal, March 1977

  • Ryckaert, Jean-Paul; Ciccotti, Giovanni; Berendsen, Herman J. C.
  • Journal of Computational Physics, Vol. 23, Issue 3
  • DOI: 10.1016/0021-9991(77)90098-5

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes
journal, January 2015

  • Salerno, K. Michael; Grest, Gary S.
  • Faraday Discussions, Vol. 181
  • DOI: 10.1039/C4FD00249K

Mechanical properties of self-assembled nanoparticle membranes: stretching and bending
journal, January 2015

  • Wang, Yifan; Kanjanaboos, Pongsakorn; McBride, Sean P.
  • Faraday Discussions, Vol. 181
  • DOI: 10.1039/C4FD00243A

Works referencing / citing this record:

Free‐Standing 2D Nanoassemblies
journal, July 2019


Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power
journal, March 2017

  • Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14778

Self-assembly of hairy disks in two dimensions – insights from molecular simulations
journal, January 2018

  • Borówko, Małgorzata; Rżysko, Wojciech; Sokołowski, Stefan
  • Soft Matter, Vol. 14, Issue 16
  • DOI: 10.1039/c8sm00213d

Pair and many-body interactions between ligated Au nanoparticles
journal, January 2019

  • Liepold, Christopher; Smith, Alex; Lin, Binhua
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5064545

Local photo-mechanical stiffness revealed in gold nanoparticles supracrystals by ultrafast small-angle electron diffraction
journal, March 2019

  • Mancini, Giulia Fulvia; Pennacchio, Francesco; Latychevskaia, Tatiana
  • Structural Dynamics, Vol. 6, Issue 2
  • DOI: 10.1063/1.5091858

Local photo-mechanical stiffness revealed in gold nanoparticles supracrystals by ultrafast small-angle electron diffraction
text, January 2018