DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Binary nanoparticle superlattices of soft-particle systems

Abstract

The solid-phase diagram of binary systems consisting of particles of diameter σA=σ and σB=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.

Authors:
 [1]
  1. Department of Physics and Astronomy, Ames Laboratory, Iowa State University Ames, IA 50011
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1235111
Alternate Identifier(s):
OSTI ID: 1221931
Report Number(s):
IS-J-8681
Journal ID: ISSN 0027-8424
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 112 Journal Issue: 31; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; phase separation; superlattices; crystalline phases; stoichiometry

Citation Formats

Travesset, Alex. Binary nanoparticle superlattices of soft-particle systems. United States: N. p., 2015. Web. doi:10.1073/pnas.1504677112.
Travesset, Alex. Binary nanoparticle superlattices of soft-particle systems. United States. https://doi.org/10.1073/pnas.1504677112
Travesset, Alex. Mon . "Binary nanoparticle superlattices of soft-particle systems". United States. https://doi.org/10.1073/pnas.1504677112.
@article{osti_1235111,
title = {Binary nanoparticle superlattices of soft-particle systems},
author = {Travesset, Alex},
abstractNote = {The solid-phase diagram of binary systems consisting of particles of diameter σA=σ and σB=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversity observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.},
doi = {10.1073/pnas.1504677112},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 31,
volume = 112,
place = {United States},
year = {Mon Jul 20 00:00:00 EDT 2015},
month = {Mon Jul 20 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1504677112

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Phase Diagram of Star Polymer Solutions
journal, June 1999


Quasicrystalline order in self-assembled binary nanoparticle superlattices
journal, October 2009

  • Talapin, Dmitri V.; Shevchenko, Elena V.; Bodnarchuk, Maryna I.
  • Nature, Vol. 461, Issue 7266
  • DOI: 10.1038/nature08439

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Superlattice formation in mixtures of hard-sphere colloids
journal, July 2000


Efficient calculation of temperature dependence of solid-phase free energies by overlap sampling coupled with harmonically targeted perturbation
journal, October 2010

  • Tan, Tai Boon; Schultz, Andrew J.; Kofke, David A.
  • The Journal of Chemical Physics, Vol. 133, Issue 13
  • DOI: 10.1063/1.3483899

Entropy-driven formation of a superlattice in a hard-sphere binary mixture
journal, September 1993

  • Eldridge, M. D.; Madden, P. A.; Frenkel, D.
  • Nature, Vol. 365, Issue 6441
  • DOI: 10.1038/365035a0

Interactions between microgel particles
journal, January 2009

  • Heyes, D. M.; Brańka, A. C.
  • Soft Matter, Vol. 5, Issue 14
  • DOI: 10.1039/b901894h

Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials
journal, August 1971

  • Hoover, William G.; Gray, Steven G.; Johnson, Keith W.
  • The Journal of Chemical Physics, Vol. 55, Issue 3
  • DOI: 10.1063/1.1676196

Phase diagram of power law and Lennard-Jones systems: Crystal phases
journal, October 2014

  • Travesset, Alex
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898371

Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Driving diffusionless transformations in colloidal crystals using DNA handshaking
journal, January 2012

  • Casey, Marie T.; Scarlett, Raynaldo T.; Benjamin Rogers, W.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2206

Efficient Method for Predicting Crystal Structures at Finite Temperature: Variable Box Shape Simulations
journal, October 2009


Many-Body Effects in Nanocrystal Superlattices: Departure from Sphere Packing Explains Stability of Binary Phases
journal, March 2015

  • Boles, Michael A.; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00839

A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions
journal, January 2011

  • Scarlett, Raynaldo T.; Ung, Marie T.; Crocker, John C.
  • Soft Matter, Vol. 7, Issue 5
  • DOI: 10.1039/c0sm00370k

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm
journal, October 2013

  • Srinivasan, B.; Vo, T.; Zhang, Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 46
  • DOI: 10.1073/pnas.1316533110

Soft‐Sphere Equation of State
journal, May 1970

  • Hoover, William G.; Ross, Marvin; Johnson, Keith W.
  • The Journal of Chemical Physics, Vol. 52, Issue 10
  • DOI: 10.1063/1.1672728

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Morphological Diversity of DNA-Colloidal Self-Assembly
journal, September 2002


Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies
journal, January 2004

  • Landman, Uzi; Luedtke, W. D.
  • Faraday Discussions, Vol. 125
  • DOI: 10.1039/b312640b

Dynamics and Statics of DNA-Programmable Nanoparticle Self-Assembly and Crystallization
journal, May 2011


Effective interactions between soft-repulsive colloids: Experiments, theory, and simulations
journal, March 2014

  • Mohanty, Priti S.; Paloli, Divya; Crassous, Jérôme J.
  • The Journal of Chemical Physics, Vol. 140, Issue 9
  • DOI: 10.1063/1.4866644

DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Materials design by DNA programmed self-assembly
journal, December 2011


Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements
journal, December 1980


Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices
journal, March 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 128, Issue 11
  • DOI: 10.1021/ja0564261

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Inverse design of simple pairwise interactions with low-coordinated 3D lattice ground states
journal, January 2013

  • Jain, Avni; Errington, Jeffrey R.; Truskett, Thomas M.
  • Soft Matter, Vol. 9, Issue 14
  • DOI: 10.1039/c3sm27785b

The Densest Packing of AB Binary Hard-Sphere Homogeneous Compounds across all Size Ratios
journal, September 2008

  • Kummerfeld, Jonathan K.; Hudson, Toby S.; Harrowell, Peter
  • The Journal of Physical Chemistry B, Vol. 112, Issue 35
  • DOI: 10.1021/jp804953r

Quantitative Prediction of the Phase Diagram of DNA-Functionalized Nanosized Colloids
journal, June 2012

  • Mladek, Bianca M.; Fornleitner, Julia; Martinez-Veracoechea, Francisco J.
  • Physical Review Letters, Vol. 108, Issue 26
  • DOI: 10.1103/PhysRevLett.108.268301

Prediction of binary hard-sphere crystal structures
journal, April 2009


Self-Assembling DNA Dendrimers:  A Numerical Study
journal, May 2007

  • Largo, Julio; Starr, Francis W.; Sciortino, Francesco
  • Langmuir, Vol. 23, Issue 11
  • DOI: 10.1021/la063036z

Polymorphism in Self-Assembled AB 6 Binary Nanocrystal Superlattices
journal, March 2011

  • Ye, Xingchen; Chen, Jun; Murray, Christopher B.
  • Journal of the American Chemical Society, Vol. 133, Issue 8
  • DOI: 10.1021/ja108708v

Densest binary sphere packings
journal, February 2012


On the Phase Behavior of Binary Mixtures of Nanoparticles
journal, January 2013

  • Ben-Simon, Avi; Eshet, Hagai; Rabani, Eran
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn302712h