DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

Abstract

A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a1, b0) obtained from Wiener filter; iv). an effective amplitude (m) obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.

Authors:
 [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1234985
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 87; Journal Issue: 1; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; neutron; neutron sources; gamma rays; scintillation detectors; cameras

Citation Formats

Wang, Cai -Lin, and Riedel, Richard A. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods. United States: N. p., 2016. Web. doi:10.1063/1.4939821.
Wang, Cai -Lin, & Riedel, Richard A. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods. United States. https://doi.org/10.1063/1.4939821
Wang, Cai -Lin, and Riedel, Richard A. Thu . "Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods". United States. https://doi.org/10.1063/1.4939821. https://www.osti.gov/servlets/purl/1234985.
@article{osti_1234985,
title = {Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods},
author = {Wang, Cai -Lin and Riedel, Richard A.},
abstractNote = {A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 104. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a1, b0) obtained from Wiener filter; iv). an effective amplitude (m) obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.},
doi = {10.1063/1.4939821},
journal = {Review of Scientific Instruments},
number = 1,
volume = 87,
place = {United States},
year = {Thu Jan 14 00:00:00 EST 2016},
month = {Thu Jan 14 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The upgraded IPNS single crystal diffractometer
journal, November 2006


Position-sensitive detectors of the detector group at Jülich
journal, June 2009

  • Engels, R.; Clemens, U.; Kemmerling, G.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 604, Issue 1-2
  • DOI: 10.1016/j.nima.2009.01.090

Design and performance of a large area neutron sensitive anger camera
journal, September 2015

  • Riedel, R. A.; Donahue, C.; Visscher, T.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 794
  • DOI: 10.1016/j.nima.2015.05.026

Scientific Reviews: Status and Future Development of Neutron Scintillation Detectors
journal, April 2006


Measurement of the absolute scintillation efficiency of granular and glass neutron scintillators
journal, November 1969


Scintillation Camera
journal, January 1958

  • Anger, Hal O.
  • Review of Scientific Instruments, Vol. 29, Issue 1
  • DOI: 10.1063/1.1715998

Inorganic thermal-neutron scintillators
journal, August 2004

  • van Eijk, C. W. E.; Bessière, A.; Dorenbos, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 529, Issue 1-3
  • DOI: 10.1016/j.nima.2004.04.163

Pulse Shape Discrimination With Selected Elpasolite Crystals
journal, October 2012

  • Glodo, Jarek; Hawrami, Rastgo; van Loef, Edgar
  • IEEE Transactions on Nuclear Science, Vol. 59, Issue 5
  • DOI: 10.1109/TNS.2012.2188646

Pulse-shape analysis of Cs2LiYCl6:Ce scintillator for neutron and gamma-ray discrimination
journal, February 2012

  • Lee, D. W.; Stonehill, L. C.; Klimenko, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 664, Issue 1
  • DOI: 10.1016/j.nima.2011.10.013

Correlating the Luminosity Parameters to Pulse Shape Discrimination
journal, August 2013

  • Lolap, Gati N.; DeVol, Timothy A.
  • IEEE Transactions on Nuclear Science, Vol. 60, Issue 4
  • DOI: 10.1109/TNS.2013.2272464

Fabrication and characterization of a lithium-glass-based composite neutron detector
journal, September 2015

  • Rich, G. C.; Kazkaz, K.; Martinez, H. P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 794
  • DOI: 10.1016/j.nima.2015.05.004

Neutron/gamma discrimination employing the power spectrum analysis of the signal from the liquid scintillator BC501A
journal, July 2013

  • Luo, X. L.; Wang, Y. K.; Yang, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 717
  • DOI: 10.1016/j.nima.2013.04.004

Real Time Implementation of a Wiener Filter Based Crystal Identification Algorithm
journal, June 2008

  • Viscogliosi, Nicolas; Riendeau, Joel; Berard, Philippe
  • IEEE Transactions on Nuclear Science, Vol. 55, Issue 3
  • DOI: 10.1109/TNS.2008.922815

The CG1 instrument development test station at the high flux isotope reactor
journal, April 2011

  • Crow, Lowell; Robertson, Lee; Bilheux, Hassina
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 634, Issue 1
  • DOI: 10.1016/j.nima.2010.06.213

Comparative analysis of digital pulse processing methods at high count rates
journal, February 2014

  • Kamleitner, J.; Coda, S.; Gnesin, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 736
  • DOI: 10.1016/j.nima.2013.10.023

Edge effect of thin lithium-glass scintillators
journal, January 1989

  • Yamaguchi, Seiya
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 274, Issue 3
  • DOI: 10.1016/0168-9002(89)90195-2

Inorganic Scintillators for Thermal Neutron Detection
journal, October 2012


Influence of the Nature of Ionizing Particles on the Specific Luminescence of Organic Scintillators
journal, November 1966

  • Voltz, R.; da Silva, J. Lopes; Laustriat, G.
  • The Journal of Chemical Physics, Vol. 45, Issue 9
  • DOI: 10.1063/1.1728106

Track-structure codes in radiation research
journal, October 2006


Response of CdWO4 crystal scintillator for few MeV ions and low energy electrons
journal, December 2012

  • Bizzeti, P. G.; Carraresi, L.; Danevich, F. A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 696
  • DOI: 10.1016/j.nima.2012.08.106

Impact of geometry on light collection efficiency of scintillation detectors for cryogenic rare event searches
journal, October 2014

  • Danevich, F. A.; Kobychev, V. V.; Kobychev, R. V.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 336
  • DOI: 10.1016/j.nimb.2014.06.015

Optimizing ZnS/ 6 LiF scintillators for wavelength-shifting-fiber neutron detectors
conference, October 2015

  • Wang, C. L.; Crow, M. L.; Funk, L. L.
  • 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)
  • DOI: 10.1109/NSSMIC.2015.7581839

Statistical pattern recognition: a review
journal, January 2000

  • Jain, A. K.; Duin, P. W.
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 1
  • DOI: 10.1109/34.824819

Pulse-shape discrimination with CdWO4 crystal scintillators
journal, June 1998

  • Fazzini, T.; Bizzeti, P. G.; Maurenzig, P. R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 410, Issue 2
  • DOI: 10.1016/S0168-9002(98)00179-X

A γ-ray background model for Monte Carlo simulations
journal, August 2007

  • Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 579, Issue 1
  • DOI: 10.1016/j.nima.2007.04.056

Calibration of a Li-glass detector for neutron energies above 50 keV by the 1H(t,n) 3He reaction
journal, November 1994

  • Drosg, M.; Drake, D. M.; Masarik, Jozef
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 94, Issue 3
  • DOI: 10.1016/0168-583X(94)95371-6

Works referencing / citing this record:

Feasibility study of a compact neutron resonance transmission analysis instrument
journal, January 2020

  • Engel, Ezra M.; Klein, Ethan A.; Danagoulian, Areg
  • AIP Advances, Vol. 10, Issue 1
  • DOI: 10.1063/1.5129961