skip to main content

DOE PAGESDOE PAGES

Title: Enhanced spin-phonon-electronic coupling in a 5d oxide

Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.
Authors:
 [1] ;  [2] ;  [3] ;  [2] ;  [1] ;  [4] ;  [5] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. National Inst. for Materials Science (NIMS), Tsukuba (Japan)
  3. Kyoto Univ. (Japan)
  4. Chinese Academy of Sciences (CAS), Beijing (China)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
OSTI Identifier:
1234319
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY