DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution

Abstract

Metal oxides are attractive candidates for low cost, earth-abundant electrocatalysts. However, owing to their insulating nature, their widespread application has been limited. Nanostructuring allows the use of insulating materials by enabling tunneling as a possible charge transport mechanism. We demonstrate this using TiO2 as a model system identifying a critical thickness, based on theoretical analysis, of about ~4 nm for tunneling at a current density of ~1 mA/cm2. This is corroborated by electrochemical measurements on conformal thin films synthesized using atomic layer deposition (ALD) identifying a similar critical thickness. We generalize the theoretical analysis deriving a relation between the critical thickness and the location of valence band maximum relative to the limiting potential of the electrochemical surface process. The critical thickness sets the optimum size of the nanoparticle oxide electrocatalyst and this provides an important nanostructuring requirement for metal oxide electrocatalyst design.

Authors:
 [1];  [2];  [3];  [2];  [4]
  1. Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States, SUNCAT, SLAC National Accelerator Laboratory, Menlo Park, California 94025-7015, United States, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
  2. Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States
  3. SUNCAT, SLAC National Accelerator Laboratory, Menlo Park, California 94025-7015, United States
  4. Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, United States, SUNCAT, SLAC National Accelerator Laboratory, Menlo Park, California 94025-7015, United States
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center on Nanostructuring for Efficient Energy Conversion (CNEEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1233977
Alternate Identifier(s):
OSTI ID: 1168333
Grant/Contract Number:  
SC0001060
Resource Type:
Published Article
Journal Name:
Nano Letters
Additional Journal Information:
Journal Name: Nano Letters Journal Volume: 14 Journal Issue: 10; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis (heterogeneous); solar (fuels); photosynthesis (natural and artificial); bio-inspired; electrodes - solar; defects; charge transport; materials and chemistry by design; synthesis (novel materials); nanostructuring; atomic layer deposition; water splitting

Citation Formats

Viswanathan, Venkatasubramanian, Pickrahn, Katie L., Luntz, Alan C., Bent, Stacey F., and Nørskov, Jens K. Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution. United States: N. p., 2014. Web. doi:10.1021/nl502775u.
Viswanathan, Venkatasubramanian, Pickrahn, Katie L., Luntz, Alan C., Bent, Stacey F., & Nørskov, Jens K. Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution. United States. https://doi.org/10.1021/nl502775u
Viswanathan, Venkatasubramanian, Pickrahn, Katie L., Luntz, Alan C., Bent, Stacey F., and Nørskov, Jens K. Thu . "Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution". United States. https://doi.org/10.1021/nl502775u.
@article{osti_1233977,
title = {Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution},
author = {Viswanathan, Venkatasubramanian and Pickrahn, Katie L. and Luntz, Alan C. and Bent, Stacey F. and Nørskov, Jens K.},
abstractNote = {Metal oxides are attractive candidates for low cost, earth-abundant electrocatalysts. However, owing to their insulating nature, their widespread application has been limited. Nanostructuring allows the use of insulating materials by enabling tunneling as a possible charge transport mechanism. We demonstrate this using TiO2 as a model system identifying a critical thickness, based on theoretical analysis, of about ~4 nm for tunneling at a current density of ~1 mA/cm2. This is corroborated by electrochemical measurements on conformal thin films synthesized using atomic layer deposition (ALD) identifying a similar critical thickness. We generalize the theoretical analysis deriving a relation between the critical thickness and the location of valence band maximum relative to the limiting potential of the electrochemical surface process. The critical thickness sets the optimum size of the nanoparticle oxide electrocatalyst and this provides an important nanostructuring requirement for metal oxide electrocatalyst design.},
doi = {10.1021/nl502775u},
journal = {Nano Letters},
number = 10,
volume = 14,
place = {United States},
year = {Thu Sep 18 00:00:00 EDT 2014},
month = {Thu Sep 18 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/nl502775u

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO2(110) by Transition-Metal Substitution
journal, August 2011

  • García-Mota, Mónica; Vojvodic, Aleksandra; Metiu, Horia
  • ChemCatChem, Vol. 3, Issue 10
  • DOI: 10.1002/cctc.201100160

Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion
journal, December 2013

  • Katsounaros, Ioannis; Cherevko, Serhiy; Zeradjanin, Aleksandar R.
  • Angewandte Chemie International Edition, Vol. 53, Issue 1
  • DOI: 10.1002/anie.201306588

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Electrocatalysis: understanding the success of DSA®
journal, May 2000


Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale
journal, January 2013

  • Stoerzinger, Kelsey A.; Risch, Marcel; Suntivich, Jin
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee40321a

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

The anodic characteristics of modified Mn oxide electrode: Ti/RuOx/MnOx
journal, April 1978


Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition
journal, August 2012


High-Resolution Electrochemical, Electrical, and Structural Characterization of a Dimensionally Stable Ti/TiO[sub 2]/Pt Electrode
journal, January 2002

  • Macpherson, Julie V.; Gueneau de Mussy, Jean-Paul; Delplancke, Jean-Luc
  • Journal of The Electrochemical Society, Vol. 149, Issue 7
  • DOI: 10.1149/1.1479158

Current and Voltage Limiting Processes in Thin Film Hematite Electrodes
journal, March 2011

  • Klahr, Benjamin M.; Hamann, Thomas W.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 16
  • DOI: 10.1021/jp200197d

Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Atomic layer deposition for electrochemical energy generation and storage systems
journal, January 2012

  • Peng, Qing; Lewis, Jay S.; Hoertz, Paul G.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 30, Issue 1
  • DOI: 10.1116/1.3672027

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production
journal, April 2007

  • Ni, Meng; Leung, Michael K. H.; Leung, Dennis Y. C.
  • Renewable and Sustainable Energy Reviews, Vol. 11, Issue 3
  • DOI: 10.1016/j.rser.2005.01.009

Physical electrochemistry of ceramic oxides
journal, January 1991


Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes
journal, January 2013

  • Doyle, Richard L.; Godwin, Ian J.; Brandon, Michael P.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 33
  • DOI: 10.1039/c3cp51213d

The absolute energy positions of conduction and valence bands of selected semiconducting minerals
journal, March 2000

  • Xu, Yong; Schoonen, Martin A. A.
  • American Mineralogist, Vol. 85, Issue 3-4
  • DOI: 10.2138/am-2000-0416

Electron transfer reactions at film covered metal electrodes
journal, September 1977


Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution
journal, October 2012

  • Trotochaud, Lena; Ranney, James K.; Williams, Kerisha N.
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja307507a

Electrical conductivity in Li 2 O 2 and its role in determining capacity limitations in non-aqueous Li-O 2 batteries
journal, December 2011

  • Viswanathan, V.; Thygesen, K. S.; Hummelshøj, J. S.
  • The Journal of Chemical Physics, Vol. 135, Issue 21
  • DOI: 10.1063/1.3663385

Li–O 2 Kinetic Overpotentials: Tafel Plots from Experiment and First-Principles Theory
journal, January 2013

  • Viswanathan, V.; Nørskov, J. K.; Speidel, A.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 4
  • DOI: 10.1021/jz400019y

Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen
journal, April 2011

  • Yeo, Boon Siang; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 133, Issue 14
  • DOI: 10.1021/ja200559j

Synthesis of Supported Catalysts by Atomic Layer Deposition
journal, February 2012


Precise oxygen evolution catalysts: Status and opportunities
journal, March 2014


Tunneling and Polaron Charge Transport through Li 2 O 2 in Li–O 2 Batteries
journal, September 2013

  • Luntz, A. C.; Viswanathan, V.; Voss, J.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz401926f