DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of optimum solid oxide membrane electrolysis cells for metals production

Abstract

Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, a discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.

Authors:
;
Publication Date:
Research Org.:
Metal Oxygen Separation Technologies, Inc.
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1233949
Alternate Identifier(s):
OSTI ID: 1315311
Grant/Contract Number:  
FC36-14GO14011; EE0003454; EE0005547; DMI-9424069; DMI-0457381; CBET-1210442; DMR-08-19762
Resource Type:
Published Article
Journal Name:
Progress in Natural Science
Additional Journal Information:
Journal Name: Progress in Natural Science Journal Volume: 25 Journal Issue: 6; Journal ID: ISSN 1002-0071
Publisher:
Elsevier
Country of Publication:
China
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrolysis; Solid oxide; Membranes; Metals production; Environmentally benign; som technology; molten flux; deoxidation; magnesium; alloys; copper

Citation Formats

Guan, Xiaofei, and Pal, Uday B. Design of optimum solid oxide membrane electrolysis cells for metals production. China: N. p., 2015. Web. doi:10.1016/j.pnsc.2015.11.004.
Guan, Xiaofei, & Pal, Uday B. Design of optimum solid oxide membrane electrolysis cells for metals production. China. https://doi.org/10.1016/j.pnsc.2015.11.004
Guan, Xiaofei, and Pal, Uday B. Tue . "Design of optimum solid oxide membrane electrolysis cells for metals production". China. https://doi.org/10.1016/j.pnsc.2015.11.004.
@article{osti_1233949,
title = {Design of optimum solid oxide membrane electrolysis cells for metals production},
author = {Guan, Xiaofei and Pal, Uday B.},
abstractNote = {Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, a discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.},
doi = {10.1016/j.pnsc.2015.11.004},
journal = {Progress in Natural Science},
number = 6,
volume = 25,
place = {China},
year = {Tue Dec 01 00:00:00 EST 2015},
month = {Tue Dec 01 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.pnsc.2015.11.004

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Experimental and DFT Study of the Tautomeric Behavior of Cobalt-Containing Secondary Phosphine Oxides
journal, February 2007

  • Wei, Chu-Hung; Wu, Cheng-En; Huang, Yi-Luen
  • Chemistry - A European Journal, Vol. 13, Issue 5
  • DOI: 10.1002/chem.200601051

Direct electrochemical preparation of CeNi5 and LaxCe1−xNi5 alloys from mixed oxides by SOM process
journal, March 2010


Emerging SOM technology for the green synthesis of metals from oxides
journal, October 2001


Production of Silicon by Solid Oxide Membrane-Based Electrolysis Process
journal, January 2013

  • Jiang, Yihong; Xu, JiaPeng; Guan, Xiaofei
  • MRS Proceedings, Vol. 1493
  • DOI: 10.1557/opl.2013.33

Solid oxide fuel cells for stationary, mobile, and military applications
journal, December 2002


Solid oxide membrane process for magnesium production directly from magnesium oxide
journal, August 2005

  • Krishnan, A.; Pal, U. B.; Lu, X. G.
  • Metallurgical and Materials Transactions B, Vol. 36, Issue 4
  • DOI: 10.1007/s11663-005-0037-9

Mitigating Electronic Current in Molten Flux for the Magnesium SOM Process
journal, March 2014

  • Gratz, Eric S.; Guan, Xiaofei; Milshtein, Jarrod D.
  • Metallurgical and Materials Transactions B, Vol. 45, Issue 4
  • DOI: 10.1007/s11663-014-0060-9

Electrochemical deoxidation of induction-stirred copper melts
journal, January 1973

  • Oberg, Karl E.; Friedman, Lawrence M.; Boorstein, William M.
  • Metallurgical Transactions, Vol. 4, Issue 1
  • DOI: 10.1007/BF02649607

Deoxidation of Molten Metals by Short Circuiting Yttria‐Stabilized Zirconia Electrolyte Cell
journal, February 1994

  • Yuan, Shi; Pal, Uday; Chou, Kuo C.
  • Journal of The Electrochemical Society, Vol. 141, Issue 2
  • DOI: 10.1149/1.2054750

A pilot-scale trial of an improved galvanic deoxidation process for refining molten copper
journal, April 1999

  • Soral, P.; Pal, U.; Larson, H. R.
  • Metallurgical and Materials Transactions B, Vol. 30, Issue 2
  • DOI: 10.1007/s11663-999-0060-3

Electrochemical Characterization of a Solid Oxide Membrane Electrolyzer for Production of High-Purity Hydrogen
journal, September 2009

  • Pati, Soobhankar; Yoon, Kyung Joong; Gopalan, Srikanth
  • Metallurgical and Materials Transactions B, Vol. 40, Issue 6
  • DOI: 10.1007/s11663-009-9286-3

Solid Oxide Membrane (SOM) technology for environmentally sound production of tantalum metal and alloys from their oxide sources
journal, October 2005


Periodic Shorting of SOM Cell to Remove Soluble Magnesium in Molten Flux and Improve Faradaic Efficiency
journal, August 2014

  • Guan, Xiaofei; Su, Shizhao; Pal, Uday B.
  • Metallurgical and Materials Transactions B, Vol. 45, Issue 6
  • DOI: 10.1007/s11663-014-0142-8

LSM (La 0.8 Sr 0.2 MnO 3-δ )–Inconel Inert Anode Current Collector for Solid Oxide Membrane (SOM) Electrolysis
journal, January 2013

  • Guan, Xiaofei; Pal, Uday B.; Gopalan, Srikanth
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.016311jes

Green Electrochemical Process Solid-Oxide Oxygen-Ion-Conducting Membrane (SOM): Direct Extraction of Ti-Fe Alloys from Natural Ilmenite
journal, February 2012

  • Lu, Xionggang; Zou, Xingli; Li, Chonghe
  • Metallurgical and Materials Transactions B, Vol. 43, Issue 3
  • DOI: 10.1007/s11663-012-9633-7

A direct electrochemical route from oxides to Ti–Si intermetallics
journal, July 2010