skip to main content

DOE PAGESDOE PAGES

Title: Magneto-structural transformations via a solid-state nudged elastic band method: Application to iron under pressure

We extend the solid-state nudged elastic band method to handle a non-conserved order parameter, in particular, magnetization, that couples to volume and leads to many observed effects in magnetic systems. We apply this formalism to the well-studied magneto-volume collapse during the pressure-induced transformation in iron—from ferromagnetic body-centered cubic (bcc) austenite to hexagonal close-packed (hcp) martensite. We also find a bcc-hcp equilibrium coexistence pressure of 8.4 GPa, with the transition-state enthalpy of 156 meV/Fe at this pressure. A discontinuity in magnetization and coherent stress occurs at the transition state, which has a form of a cusp on the potential-energy surface (yet all the atomic and cell degrees of freedom are continuous); the calculated pressure jump of 25 GPa is related to the observed 25 GPa spread in measured coexistence pressures arising from martensitic and coherency stresses in samples. Furthermore, our results agree with experiments, but necessarily differ from those arising from drag and restricted parametrization methods having improperly constrained or uncontrolled degrees of freedom.
Authors:
 [1] ;  [2]
  1. Ames Lab., Ames, IA (United States)
  2. Ames Lab., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)
Publication Date:
OSTI Identifier:
1227414
Report Number(s):
IS-J--8658
Journal ID: ISSN 0021-9606; JCPSA6
Grant/Contract Number:
AC02-07CH11358
Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 143; Journal Issue: 6; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE